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Abstract

A sender with private information (high or low ability) tries to convince a receiver

of having higher ability. A certifier offers a menu of (blackwell) experiments and

prices to screen the sender. The sender uses the experiment’s outcome to persuade

the receiver to take a favorable action. This paper focuses on the equilibrium inter-

action in this certification game when the receiver can distinguish between outcomes

of the experiment only based on the hard information contained in the outcome. The

main result characterizes all possible equilibrium outcomes in terms of a convex com-

bination of menus containing only simple experiments. Using this characterization, I

show the existence of an equilibrium in which soft information overrules hard infor-

mation; due to equilibrium self-selection of the sender, some outcomes whose hard

information makes the receiver more pessimistic about the sender’s ability end up

persuading the receiver to choose the favorable action.

KEYWORDS: Monopoly Certification, Information Acquisition, Mechanism Design,

Communication Game, Adverse Selection
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Introduction

Consider a simple adverse selection environment in which a privately informed sender
(either high ability or low ability) tries to convince a receiver that he is high ability. The
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receiver chooses between one of two actions and has state-dependent preferences. When
the receiver’s prior belief about the sender’s expected ability is low enough, she prefers to
act unfavorably to the sender. Suppose a statistical procedure can evaluate the sender’s
private information. In that case, certification intermediaries can enable signaling be-
tween the sender and the receiver, allowing the sender to persuade the receiver to take the
favorable action. Such intermediaries are present in various sectors, including research
laboratories, consultants, auditors, and academic testing.1

This paper focuses on the role of discernible hard information in shaping the certifi-
cation market. Hard information is discernible when the receiver can distinguish between
experimental outcomes only based on their hard information. The exact procedure of the
experiments might differ, but as long as their outcomes have the same statistical (hard) in-
formation, the receiver can not distinguish the experiments. Discernibility presents itself
as a natural restriction on the certifier’s communication abilities.2

Consider a revenue-maximizing certifier who offers a menu of experiments and price
pairs. The design of this menu screens the sender for price discrimination. The experi-
ments must be informative enough to persuade the receiver; the sender is only willing to
pay for an experiment if it leads to a favorable action by the receiver. This restricts the
informativeness of experiments offered by the certifier by restricting the certifier’s abil-
ity to pool high and low ability senders. Discernibility of information further restricts
the certifier from pooling in test outcomes with different hard information. Discernibility
also prevents the certifier from segmenting the sender across experiment outcomes with
the same hard information.

My main result, Theorem 1, characterizes all possible equilibrium outcomes in terms
of a simple class of certificates that are offered in equilibrium. This shows the relation-
ship between the equilibrium welfare and the design of optimal experiments. I use this
characterization to establish two testable implications of my model. Equilibrium of the
certification game might give rise to evidence generated by an experiment, which leads
to a favorable action by the receiver even when the (statistical) hard information of the
evidence leads to the receiver being more pessimistic (relative to her prior) about the
sender’s ability. Additionally, I show the existence of a separating equilibrium without

1Blair et al. (2011) discusses the potential impact of third-party certification on global commerce and
discusses the need for regulation of the assurance and certification industry.

2Standards such as ANSI/ASQ Z1. 4 and ISO 2859 provide guidelines for the acceptance and sampling
of products. These and many other standards essentially take the form of statistical tests.
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perfectly informative experiments and the existence of partial pooling equilibria.

1 Model

I study a stylized model of a sender (he) and a receiver (she). The sender is privately in-
formed about his binary ability, high or low, and this represents the sender’s private type
θ. The receiver decides to accept or reject the sender based on verifiable results of some
(statistical/blackwell) experiment. The sender acquires these tests from a monopolist cer-
tifier. The certifier and receiver have a common prior µ about the sender’s type. The
certifier can flexibly post a menu of experiments and prices.3 In particular, the certifier
can send messages conditional on both the report of the sender and the sender’s true type.
The ability to condition on the sender’s true type represents the certifier’s ”expertise”; the
certifier has some ability or technology to evaluate the agent’s private information. The
certifier’s signals are afforded credibility through some physical, contractual, or reputa-
tional reason.

1.1 Timing

t=1: The monopolist certifier posts a menu of experiments and prices observable to the
sender and receiver.
t=2: The sender privately observes his type.
t=3: The sender privately purchases an option from the menu offered, or decides not to
get certified.
t=4: The sender and receiver observe the realization of the purchased experiment. If no
experiment was purchased, the receiver observes that the sender is not certified.
t=5: The receiver chooses an action in A = {ah, al}.

The sender’s type θ ∈ {h, l} represents his private knowledge about his ability. The
receiver has a prior µ for the state being h. The receiver chooses between actions in A =

{ah, al}. The receiver’s utility is ν : A × {h, l} → R such that ν(ah, h) > ν(al, h) and
ν(al, l) > ν(ah, l). The sender has a state independent utility u : A → R such that 0 =

u(al) < u(ah) = 1. The receiver’s optimal choice, given his beliefs µ, is a∗(µ) = ah if µ ≥
π∗ and al otherwise. Where π∗ = v(al ,l)−v(ah,l)

v(al ,l)−v(ah,l)+v(ah,h)−v(al ,h)
. I assume 0 < µ < π∗; the

3I don’t allow the pricing to be contingent on the realization of the experiment.
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receiver is ex-ante pessimistic about the sender’s ability and will choose the unfavorable
action al without any information. In particular, this assumption implies that the receiver
only chooses ah if the certifier generates some hard information.

The certifier acts like a mediator between the sender and receiver. The certifier pub-
licly announces a menu of experiments and price pairs. The sender is privately charged a
fee based on the experiment chosen from he menu. The certifier then publicly announces
the realized message based on the true and reported type. I restrict attention to the certi-
fier setting an upfront fee instead of a fee conditional on the realized signal4. The sender
verifiably reports the realization of a statistical experiment.5,6

When information is discernible, each outcome can be represented by its likelihood
ratio. Formally an experiment is given by σ : {h, l} → ∆([0, ∞]). We identify each signal
realization e ∈ [0, ∞] for the experiment σ with its corresponding likelihood ratio dσ(e|h)

dσ(e|l) ∈
[0, ∞].7 I refer to the realization e ∈ [0, ∞] of the experiment σ as evidence or signal
realized by σ. The signal realization e can be verifiably disclosed even if the experiment σ

is unknown.8

For any report θ̂ ∈ {h, l} and signal e ∈ [0, ∞], the probability of realization e condi-
tional on the true type θ, i.e. σθ̂(e|l) is a function of e and σθ̂(e|h). Let Σ represent the set
of all experiments.

1.2 Strategies

The certifier posts a menu of prices and experiments m = {(σi, ρi)i∈I , (Φ, 0)}. Where
σi : {h, l} → ∆([0, ∞]) and ρi ∈ [0, 1] and I is some arbitrary indexing set. Note for
later that restricting the certifier to two non-trivial menu options is without loss, as the
sender’s private information is binary. The sender has the option not to buy any of the

4Allowing a fee conditional on the signal realization, enables the certifier to charge a fee that’s correlated
to the true state. The work of Faure-Grimaud et al. (2009) considers a certification model with outcome
contingent fees, in particular, they show full surplus extraction by the certifier.

5The verifiability can be seen as a consequence of the certifier staking their reputation on the claim or
some contractual restriction.

6For a topological space X, the set ∆(X) is the set of all Borel probability measures of X.
7Note that when restricted to [0, ∞) absolute continuity holds, σ(.|h) ≪ σ(.|l). Thus dσ(x|h)

dσ(x|l) is well

defined in this restricted set. I extend the definition to set [0, ∞] by requiring .
0 := ∞ and 0

0 := 0.
8The restriction on the message space to [0, ∞] is not essential. We can allow for any message space

that is homeomorphic to [0, ∞]. But using [0, ∞] as the message provides for a convenient representation of
experiments.
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offered experiments. Thus, I require every menu to include a ”no certification” signal (Φ)
at 0 cost.9 The set of all menus is M.

The receiver’s strategy (decison rule) is to choose an action a ∈ {ah, al} given some
m ∈ M and e ∈ ([0, ∞] ∪ Φ); this is given by a measurable function ζ : M× ([0, ∞] ∪
Φ) → {ah, al}. Let Eζ

m := {e ∈ [0, ∞] ∪ Φ | ζ(m, e) = ah}. This represents the set of
all evidence that lead to an action ah when the certifier’s menu is m and the receiver’s
decision rule is ζ. Each of the receiver’s strategies (bijectively) corresponds to a collection
(Eζ

m)m∈M. Whenever convenient, I will omit writing ζ as part of the receiver strategy and
express it in terms of a collection of sets (Em)m∈M.

The sender’s strategy is a selection rule that specifies the menu item chosen by the
sender given his type θ, and the posted menu m ∈ M. The selection strategy is given
by γ̃θ(m) ∈ m and γ̃θ(m) = ( γθ(m), p(γθ(m)) ). The sender’s payoff from a selec-
tion γθ when he faces a menu m and anticipates the acceptance set E is

∫
E dγθ(m)(e|θ)−

p(γθ(m)).

1.3 Histories

The certifier’s history is the empty history hms = ∅. The sender moves at a history hs =

(m, θ) ∈ M× {h, l}. The receiver’s history is hr = (m, e) ∈ M× ([0, ∞] ∪ Φ).

2 Equilibrium

The solution concept is PBE in pure strategy with tie-breaking assumptions.10 An equi-
librium strategy profile of the game is given by the tuple ((Em)m∈M, γ∗, m∗) which satis-
fies the following:

• Certifier rationality: m∗ ∈ arg max
m∈M

Eµ[p(γ∗
θ (m))]

• Sender rationality: for all m = {(σi, ρi)i∈I , (Φ, 0)} the sender’s selection rule:

γ∗
θ (m) ∈ arg max

(σ′,p(σ′))∈m

∫
Em

dσ′(e|θ)− p′

• Bayes rule where possible:

9More precisely, each menu contains a deterministic experiment that takes value Φ.
10I focus only on pure strategies. Moreover, I require in equilibrium the receiver always breaks ties in

favor of the sender
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– At the history (m, e) such that e ∈ supp(γ∗
θ (m)(.|θ)) for some type θ ∈ {h, l},

the receiver’s belief about the sender’s type being high is given by Bayes rule:

µm,e =
dγ∗

h(m)(e|h)µ
dγ∗

h(m)(e|h)µ + dγ∗
l (m)(e|l)(1 − µ)

– At history (m, e) such that e ̸∈ supp(γ∗
θ (m)(.|θ)) for both types θ ∈ {h, l}. The

receiver has arbitrary beliefs µm,e about the sender’s type.

• Receiver rationality: for any m ∈ M, the receiver’s acceptance set satisfies:

Em = {e ∈ [0, ∞] ∪ Φ|ah ∈ arg max
a∈{al ,ah}

Eµm,e [v(a, θ)]}

Let E represent the set of all such equilibria. I refer to Em∗ as the receiver’s equilibrium
(or on-path) acceptance set.11

Note that given (Em)m∈M, sequential rationality and tie-breaking uniquely pin down γ∗,
thus whenever convenient I will omit explicitly mentioning the sender’s equilibrium se-
lection strategy γ∗.

Define (Em∗ , m∗) := ((E′
m)m∈M, γ∗, m∗) where E′

m = ∅ when m ̸= m∗ and E′
m∗ = Em∗ .

Lemma 1. If ((Em)m∈M, γ∗, m∗) ∈ E then (Em∗ , m∗) ∈ E .

Proof. The last three conditions in the definition of equilibrium are satisfied as
((Em)m∈M, γ∗, m∗) ∈ E . By definition of the off-path actions of the receiver E′

m, it’s im-
mediate that certifier rationality for m∗ also holds.

Essentially, the receiver can hold arbitrarily pessimistic beliefs following a deviation
by the certifier. This trivially makes m∗ the best response of the certifier. By Lemma 1, we
know m is offered on-path in some equilibrium (in E ) along with the receiver’s on-path
acceptance set Em if and only if∫

E′ dγ∗
h(m)(e|h)∫

E′ dγ∗
l (m)(e|l)

≥ 1
l(µ)

∀ E′ ⊂ Em

Where l(µ) = µ(1−π∗)
π∗(1−µ)

, i.e. l(µ) is the minimum likelihood ration, given prior µ, that is
needed for ah to be sequentially rational response of the receiver.

A menu m∗ ∈ M is valid with respect to E if (E, m) ∈ E . Where (E, m) =

((Em′)m′∈M, γ∗, m) such that Em = ∅ whenever m ̸= m∗ and Em∗ = E.
11A stronger version of PBE might require the element e = ∞ ∈ Em for every m ∈ M Such a restriction

could represent aspects of objectiveness in the evidence produced by the certifier. This affects none of the
results from section 4 onwards, so I won’t impose this restriction.
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Remark 1. An immediate conclusion from receivers ex-ante pessimism (µ < π∗) is that
for any equilibrium ((Em)m∈M, γ∗, m∗) ∈ E it must be that Φ ̸∈ Em for all m ∈ M. This
means that not getting certified never leads to acceptance by the receiver in any equilib-
rium of the game. This is easy to see, as if Φ ∈ Em, then at the subgame following the
menu choice m of the certifier, either the sender or the receiver has a profitable deviation.
Thus, in the rest of the paper, all acceptance sets E are assumed to be such that Φ ̸∈ E.

The sender’s private information is binary, hence it is without loss to consider menus
with at most two (non-trivial) informative experiments.

Fix some set E ⊂ [0, ∞], the menu m = {(σm
θ , ρm

θ )θ∈{h,l}, (Φ, 0)} ∈ M is obedient with
respect to E if m satisfies the following:

• Sender IC and IR∫
E

dσm
θ (e|θ)− ρθ ≥

∫
E

dσm
θ′ (e|θ)− ρθ′ ∀ θ, θ′ ∈ {l, h}

∫
E

dσm
θ (e|θ) ≥ ρm

θ ∀ θ ∈ {l, h}

• Receiver obedience ∫
E′ dσm

h (e|h)∫
E′ dσm

l (e|l)
≥ 1

l(µ)
∀ E′ ⊂ E

The certifier’s revenue from an obedient menu m be given by rev(m) = µρm
h + (1 −

µ)ρm
l . For each E ⊂ [0, ∞] ∩ Φ, the set of menus obedient with respect to E is given by

ME.
Two equilibria ((Em)m∈M, m∗) and ((E′

m)m∈M, m′) are outcome equivalent if:

• γ∗
θ (m

∗)(.|h)|Em∗ = γ∗
θ (m

′)(.|h)|E′
m′

∀ θ (Experiment selection)

• Eµ[p(γ∗
θ (m

∗)] = Eµ[p(γ∗
θ (m

′)] (Revenue)
The first condition requires that in both equilibria the conditional distribution of sig-

nals restricted to the receiver’s equilibrium acceptance set is the same.12

The second condition requires that the certifier earns the same revenue in both equi-
libria. In particular, these conditions imply that Em∗ = E′

m′ . Moreover, whenever the
equilibrium menus m∗, m′ are obedient with respect to Em∗ and E′

m′ respectively then

12When the distribution of signals that lead to acceptance by the receiver is estimatable by some exter-
nal researchers, the certification menu allows the researcher to infer facts about the equilibrium based on
(statistical) hard information of an experiment’s outcomes.
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σm∗
θ |Em∗ = σm′

θ |E′
m′

. As defined, outcome equivalence implies payoff equivalence but is
not implied by payoff equivalence. If two equilibrium outcomes are equivalent, then
the distribution of messages conditional on the receiver accepting is the same across the
equilibria for each type of sender.

The following observation highlights the key role played by obedient menus.

Observation 1. If a menu m∗ ∈ M is offered in equilibrium, then there exists an outcome
equivalent equilibrium ((E′)m∈M, γ′, m′) such that m′ ∈ ME′

m′
. If a menu m∗ is obedient

with respect to some E ⊂ [0, ∞], then an equilibrium exists in which the on-path menu is
m∗.

Proof. See appendix.

Remark 2. Observation 1 is essentially the revelation principle with a restriction on the
messages that the certifier can send to the receiver. This restriction results from the as-
sumption that the receiver can distinguish between experiments’ outcomes if and only if
the outcomes have different likelihood ratios (hard information). In particular, the certi-
fier can not pool evidence e with evidence e′ ̸= e into a single message sent to the receiver.

Lemma 2. Any equilibrium ((Em)m∈M, γ∗, m∗) ∈ E in which e = 0 ∈ E∗
m is outcome equiva-

lent to ((E′
m)m∈M, γ′m′) ∈ E , where E′

m = Em for m ̸= m∗, E′
m∗ = Em∗ \ {0}, m′ = m∗ and

γ′ = γ∗.

Proof. Whenever e = 0 ∈ Em∗ , the signal e = 0 has probability 0 of being disclosed in
equilibrium. Thus, removing e = 0 from Em∗ does not affect the equilibrium outcomes.

Let the set of equilibria in which the on-path menu is obedient and e = 0 is not part of
the receiver’s equilibrium strategy Em∗ be given by E . As I am interested in the equilib-
rium outcomes, it is without loss to restrict attention to equilibrium in E . In usual mech-
anism design terms (Forges (1986), Myerson (1986)), observation 1 shows that restricting
to truthful mechanisms is enough, but as outcome equivalence is stronger than payoff
equivalence, restricting to a direct recommendation mechanism (pass-fail experiments) is
not necessarily without loss for the hard information environment in mind.
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3 Refinement

Observation 1 shows that any menu that is obedient with respect to some E is offered on-
path in some equilibrium of the game. This conclusion relies on allowing the receiver to
have arbitrary off-path beliefs. To focus on equilibria where the on-path menu is revenue
maximizing with respect to the receiver’s on-path acceptance set E, I propose a refinement
of the receiver’s off-path beliefs which selects for such equilibria.

The proposed refinement imposes a form of consistency on how the receiver evaluates
evidence following the certifier’s deviation. Essentially, the receiver does not change his
acceptance set unless there is a compelling reason to do so.

Refinement (Consistent Evaluation): Let the set of refined equilibrium be given by:

Er := {((Em)m∈M, γ∗, m∗) ∈ E | ∀ m ∈ M, (Em∗ , m) ∈ E =⇒ Em = Em∗}

Recall for any aceptence set E and menu m the collection (E, m) = ((E′
m′)m′∈M, γ∗, m)

where E′
m′ = ∅ when m′ ̸= m and E′

m = E.
Consider an equilibrium ((Em)m∈M, γ∗, m∗). If m∗, Em∗ are the on-path menu and

receiver’s acceptance set, then after observing a menu m valid with respect to Em∗ , the
receiver is sequentially rational to use acceptance set Em∗ given that the sender’ choice is
in γ∗(m, Em∗). Moreover, the type θ sender anticipates this and chooses σ ∈ γ∗

θ (m, Em∗).
However, if a menu m is not valid with respect to Em∗ then using the acceptance set
Em∗ is not rational for the receiver, given the sender’s choice is γ∗(m, Em∗). In this case,
the refinement does not restrict the sender’s and receiver’s off-path beliefs. Thus, the
refinement requires that, following the certifier’s deviation, the receiver does not change
his acceptance set whenever it is sequentially rational to do so, given that the sender
anticipates facing the on-path acceptance set.

The proposed refinement selects for equilibria in which both the sender and receiver
form consistent expectations about outcomes, even after an observable deviation in the
testing structure. A particular consequence is that the refinement rules out outcomes in
which the certifier gets less than second-best payoff, fixing the receiver’s on-path strategy.

Let Mr
E be the set of all menus that maximize the certifier’s revenue among all m ∈ M

that are obedient with respect to E ⊂ (0, ∞]. I refer to some m ∈ Mr
E as a revenue-

maximizing menu with respect to E. By applying observation 1 (and Lemma 2), we can
define Er ⊂ Er to be the set of equilibrium such that the equilibrium menu m∗ ∈ MEm∗ ,
where Em∗ is the receiver’s equilibrium acceptance set. More precisely, the set of equilibria
E is such that for any equilibrium in E , the on-path menu is obedient with respect to the
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receiver’s on-path acceptance set and e = 0 is not part of the receiver’s on-path acceptance
set. The following lemma demonstrates the property of Er eluded in the last paragraph.

Lemma 3. If ((Em)m∈M), m∗) ∈ Er then m∗ ∈ Mr
Em∗ . Moreover, if m∗ ∈ Mr

E for some
E ⊂ [0, ∞] then there exists an equilibrium in Er such that m∗ is offered on-path and receiver’s
on-path acceptance set is E.

Proof. See appendix

Remark 3. If two equilibria ((Em)M, γ, m∗), ((E′
m)M, γ′, m′) ∈ Er with Em∗ = E′

m′ are such
that σm∗

θ and σm′
θ only differ on EC

m∗ , then the two equilibria are outcome equivalent.

4 Equilibrium Outcomes

In this section, I will focus on equilibrium in Er such that on-path e = 1 ̸∈ Em∗ . These
equilibria constitute informative equilibria.

4.1 Structure of Equilibrium Certificates

This section establishes that the equilibria in Er can be studied by solving a constrained
linear optimization problem. I characterize all possible equilibrium outcomes in Er by
first characterizing Mr

E in terms of a simplified linear optimization problem. Using this,
I show that a simpler set of menus generates all solutions to the optimization problem.
Finally, I find the optimal menus among these simple menus.

Proposition 1. Fix some E ⊂ (0, ∞]. Let m∗ = ((σm∗
θ , ρm∗

θ )θ∈{l,h}) be obedient wrt E.
A menu m∗ ∈ Mr

E if and only if m∗ is such that

ρm∗
h =

∫
E

[
dσm∗

h (e|h)−
(

1 − 1
e

)
dσm∗

l (e|h)
]

,
ρm∗

l =
∫

E
dσm∗

l (e|l)

and solves the following optimization problem:

max
(σm

h (.|h),σm
l (.|h))∈∆([0,∞])×∆([0,∞])

µ
∫

E
dσm

h (e|h) +
∫

E

(
1
e
− µ

)
dσm

l (e|h)
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subject to ∫
E

(
1 − 1

e

)
dσm

h (e|h) ≥
∫

E

(
1 − 1

e

)
dσm

l (e|h) ≥ 0∫
E′ dσm

h (e|h)∫
E′ dσm

l (e|l)
≥ 1

l(µ)
for all E′ ⊂ E ∪ supp(σl(.|l))

Proof. See appendix

Remark 4. The proposition follows by noting two properties of the optimal menu. First,
it leaves zero rent to the low type. Second, the high type’s willingness to pay for either
of the offered experiments is weakly greater than the willingness to pay of the low type
sender.

Remark 5. Note that
∫

E

(
1 − 1

e

)
dσm

h (e|h) ≥
∫

E

(
1 − 1

e

)
dσm

l (e|h) ≥ 0 implies that
σm

θ (E|l) < σm
θ (E|h) ≤ 1. As we are interested in outcome equivalence, we can set

σθ(0|l) = 1 − σθ(E|l), making the choice of experiments well defined.

Corollary 1. If m ∈ Mr
E and rev(m) > 0 for some E ⊂ [0, ∞] then

∫
E dσm

h (e|h) = 1.

Proof. See appendix

This shows that any equilibrium menu in Er leads to the high type being accepted with
probability 1. In particular, the receiver faces no distortion whenever the sender is high
type. But the receiver’s payoff might be distorted when the sender is low type. Whenever
m ∈ ME for some E, information rent is only conceded to the high type. This rent is given
by, rent(m) =

∫
E

(
1 − 1

e

)
dσm

l (e|h).
Another immediate consequence of Proposition 1 is the existence of a separating equi-

librium. I call an equilibrium ((Em)m∈M, m∗) ∈ E separating whenever∫
Em∗

dσm∗
h (e|h) = 1 and

∫
Em∗

dσm∗
l (e|h) = 0

Corollary 2. (Existence of separating equilibrium) If an equilibrium ((Em)m∈M), m∗) ∈ Er

is separating then e∗ := inf(Em∗) ≥ 1
µ . Moreover, if for an equilibrium ((Em)m∈M), m∗) ∈ Er it

holds that e∗ := inf(Em∗) > 1
µ , then the equilibrium is separating.

The theorem shows the existence of separating equilibria when the on-path experi-
ment is an imperfect quality certification ( De and Nabar (1991) and Strausz (2010)). Al-
though the high type sender is accepted with probability 1, the low type sender might
also be accepted with positive probability, conditional on buying the experiment.
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4.1.1 Equilibrium Characterization

In this section, I restrict attention to equilibrium with countable acceptance sets.13

For any E ⊂ [0, ∞], let

T (E) := {m ∈ Mr
E| | supp(σm

h (.|h)) ∩ E| ≤ 3, | supp(σm
l (.|h)) ∩ E| ≤ 2}

Theorem 1. If ((Em)m∈M, m∗) ∈ Er such that Em∗ is countable, then there exists an outcome
equivalent equilibrium ((E′

m)m∈M, m′) ∈ Er such that m′ ∈ cvx(T (Em∗)).14

Proof. See appendix

The proof of the theorem involves solving the linear optimization problem in propo-
sition 1, to do so, I first deal with the point-wise inequalities σh(e|h)

σl(e|l)
≥ 1

l(µ) for all
e ∈ E ∩ supp(σl(e|l)). Then I proceed by solving the simplified problem by finding the
extreme points of the feasible set of experiments. The theorem establishes that all equilib-
rium outcomes in Er are generated by a simple class of menus. In particular, the theorem
characterizes the implementable rent distributions for equilibrium in Er.

Corollary 3. (Soft information overrules hard information) There exists equilibria in Er such
that after observing some evidence e < 1, the receiver chooses action ah.

Proof. See proof of Lemma 5 in the appendix.

The corollary shows the existence of an equilibrium in which the receiver takes a fa-
vorable action even after observing evidence whose hard information makes the receiver
more pessimistic about the sender.

Corollary 4. (Existence of partial pooling) There exists equilibria in Er such that supp(σl) ∩
E ⊊ supp(σh) ∩ E.

Proof. See appendix.

Partial pooling equilibrium corresponds to the optimal menu offered by the certifier
that consists of experiments with outcomes that only a high type can achieve with positive
probability, and also outcomes that both high and low type senders can achieve with
positive probability.

13I prove the statement in the appendix for discreet support distribution.
14For any set X the convex hull cvx(X) is defined as the smallest convex set containing X
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5 Literature Review and Discussion

The issue of signaling and market efficiency in pure adverse selection has been widely
studied in economic literature. The seminal paper byAkerlof (1970) shows how markets
can unravel in the presence of adverse selection, Viscusi (1978) demonstrates that quality
certification can provide an alternative to exiting the market for high type producers.
Spence (1978) shows that undertaking costly actions can help signal private information
in the context of labor markets.

This paper, like Lizzeri (1999), considers a monopolistic information intermediary,
which can produce hard (verifiable) information about the sender’s private type. Unlike
models of signaling where the costly action undertaken for signaling is wasteful, here
the costly action directly corresponds to the payoff of the intermediary. Like my model,
Lizzeri (1999) also demonstrates that the benefit from the presence of a certifier when the
receiver is pessimistic.

I consider both the information design and monopolist screening problem that the
intermediary faces; Lizzeri (1999) only focuses on the design aspect in the case of an
optimistic receiver. In Lizzeri (1999) optimal certification mechanism leads to a single
uninformative experiment. Thus, the certifier’s ability to generate hard information is
moot, and so is the discernibility of hard information

The disclosure of hard evidence is often studied in the context of voluntary disclosure
Grossman (1981), Grossman and Hart (1983), Milgrom (1981). In the context of this pa-
per, the main takeaway from models of voluntary disclosure is the minimum principle
(Guttman et al. (2014), DeMarzo et al. (2019)): non-disclosure is treated in the most pes-
simistic way by the receiver. The minimum principle holds in my model, as the prior
belief (µ < π∗) prescribes choosing al whenever the receiver observes no certification.

Although I focus on a single monopolist certifier, the analysis in the paper describes
all possible equilibrium welfare. The different equilibrium outcomes can be interpreted
as cases when the players have varying levels of market power which reduces the share
of surplus that the monopolist can capture.

Previous works on monopolistic certification have studied the welfare implications in
isolation. My work emphasizes the relationship between test design and welfare aspects
in these environments. Notably, Weksler and Zik (2023) considers the test design and wel-
fare in markets with monopolistic certifiers. However, unlike this paper Weksler and Zik
(2023) does not study a monopolistic screening problem by only allowing the certifier to
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post a single experiment. The paper by Dasgupta et al. (2022) considers a general test de-
sign and screening problem similar to mine, but they focus on an environment where an
uninformed sender can flexibly design a test before interacting with a receiver (first-party
certification). The issue of test design is also studied by Ali et al. (2022), their analysis
differs from mine as they are primarily concerned with outcomes when the intermediary
worries about the worst-case revenue across all equilibrium outcomes.

Closely related to this paper is Corrao (2023), which considers a similar monopolistic
certification problem but focuses on soft information. In Corrao (2023), the intermediary
cannot condition the experiment’s outcomes on the true type of the sender and must
rely solely on the reported type. They show that the mediator when restricted to soft
information, can induce any receiver’s belief that is consistent with hard information.
In my model, the only equilibrium outcome implementable by soft information is the
certifier optimal outcome (section 5.1).

Following the work of Kleiner et al. (2021), it’s common in economic theory to study
outcomes of mechanism design and information design problems geometrically. The
technical result of this paper follows this theme by first reducing the screening and de-
sign to a constrained linear optimization problem, then characterizing the equilibrium
outcomes in terms of the extreme points of the feasible set of experiments offered by the
certifier.

The literature on monopolistic certification also considers a moral hazard environ-
ment; Shapiro (1986), Albano and Lizzeri (2001), Zapechelnyuk (2020). However, similar
to the certification literature with pure adverse selection, these papers are silent about the
design of optimal tests. This presents a future direction for extending the methodology of
this paper to other certification environments where the investment in costly action not
only corresponds to the surplus of the certifier but also has a role in capital development
for the receiver.
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6 Appendix

6.1 Useful lemmas

Lemma 4. There exists e > 1 ∈ E if and only if there exists a menu m ∈ ME such that
rev(m) > 0 (or equivalently

∫
E dσm

h (e|h) > 0).

Proof. Sufficiency: when e > 1 ∈ E, the menu m such that σm
h (e|h) = 1, ρm

h = 1 and
σm

l = Φ, ρm
l = 0 is obedient wrt E.

Necessity: first note that incentive compatibility implies the monotonicity of allocation:∫
E
[dσm

h (e|h)− dσm
l (e|h)] ≥

∫
E

1
e
[dσm

h (e|h)− dσm
l (e|h)]

If e ∈ E =⇒ e < 1, we see that only the menu m with
∫

E dσm
h (e|h) =

∫
E dσm

l (e|h)
satisfy this. In particular, ρm

h = ρm
l . By obedience condition of the receiver we get that∫

E dσm
h (e|h) ≥

∫
E

1
el(µ)dσm

l (e|h). But this implies
∫

E dσm
l (e|h) ≥

∫
E

1
el(µ)dσm

l (e|h). As
l(µ) < 1 and by assumption e < 1 for all e ∈ E, this implies

∫
E dσm

h (e|h) =
∫

E dσm
l (e|h) =

0. By individual rationality of the sender, we get ρm
h = ρm

l = 0

Corollary 5. Let m ∈ ME for some E ⊂ [0, ∞], if there exists E′ ⊂ E ∩ [0, 1] such that∫
E′ dσm

h (e|h) > 0 then there exists some E′′ ⊂ E ∩ [1, ∞] such that e > 1 and
∫

E′′ dσm
h (e|h) > 0.

Proof. Let there exists E′ ⊂ E ∩ [0, 1] such that
∫

E′ dσm
h (e|h) > 0, if there doesn’t exist

E′′ ⊂ [0, ∞] with the properties mentioned above then
∫

E dσm
h (e|h) = 0. This follows from

reasoning similar to the necessity part of lemma 1; to avoid violation of monotonicity of
allocation

∫
E dσm

h (e|h) =
∫

E dσm
l (e|h). Then for the menu m to be obedient wrt E it must

hold that
∫

E dσm
h (e|h) =

∫
E dσm

l (e|h) = 0. Thus the corollary holds by contradiction.

6.2 Proof of Observation 1

Observation 1:
If a menu m∗ ∈ M is offered in equilibrium, then there exists an outcome equivalent

equilibrium ((E′)m∈M, γ′, m′) such that m′ ∈ ME′
m′

. If a menu m∗ is obedient wrt some
E ⊂ [0, ∞], then an equilibrium exists in which the certifier offers m∗ on-path.

Proof. If a menu m∗ is obedient wrt E, then γ∗
θ (m

∗, E) = σm∗
θ and µm∗,e ≥ π∗ for all e ∈ E.

15These two then imply that (E, m∗) is in E . Pessimistic off-beliefs of the receiver imply

15(E, m∗) is defined in lemma 1 in the main text.
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that the certifier has no incentive to deviate. The sender is best responding as the menu
m∗ and the receiver’s strategy E, as m∗ is obedient wrt E. Obedience implies that the re-
ceiver is best responding to Bayesian beliefs on-path given the equilibrium menu and the
sender’s selection rule. Thus (E, m∗) ∈ E .
Let ((Em)m∈M, γ∗, m∗) ∈ E . If m∗ satisfies sender IC wrt Em∗ this is γ∗

θ (m, E) = σm∗
θ ,

then by the definition of equilibrium we get that m∗ satisfies receiver obedience wrt
Em∗ . Assume that m∗ doesn’t satisfy sender IC wrt Em∗ . This implies that for some
θ ∈ {h, l} the senders selection γθ(m∗, E∗) ̸= σm∗

θ . In this case the menu m′ :=
((γθ(m∗), p(γθ(m∗)))θ∈{h,l} is obedient wrt Em∗ . Thus (Em∗ , m′) ∈ E by the first part of the
proof. Moreover, the equilibrium (Em∗ , m′) is outcome equivalent to ((Em)m∈M, γ, m∗) by
construction.

6.3 Proof of Lemma 3

Lemma 3:
If the ((Em)m∈M), m∗) ∈ Er then m∗ ∈ Mr

E. Moreover, if m∗ ∈ Mr
E. for some E ⊂ [0, ∞]

then there exists an equilibrium in Er for which m∗ is offered on-path and the on-path
acceptance set is Em∗ = E.

Proof. If ((Em)m∈M, m∗) ∈ Er then by definition ((Em)m∈M, m∗) ∈ E and Em = Em∗ for
all m ∈ MEm∗ . Recall that if m∗ is offered on-path then m∗ maximizes the certifier’s
revenue among all menus m ∈ M given the sender’s best responds to the receiver’s
strategy (Em)m∈M. As Em = Em∗ for all m ∈ MEm∗ , we get that rev(m∗) ≥ rev(m) for all
m ∈ MEm∗ . Thus m∗ ∈ Mr

Em∗ .
For the other direction note that if m∗ ∈ Mr

E for some E then (E, m∗) ∈ E . We construct
the following equilibrium profile ((Em)m∈M, m∗) where Em = ∅ whenever m ̸∈ ME and
Em = E whenever m ∈ ME. Now note that ((Em)m∈M, m∗) ∈ E as m∗ is obedient wrt
Em∗ = E, and by construction m∗ maximizes the certifier’s revenue given the sender’s
best response to the receiver’s strategy. Thus ((Em)m∈M, m∗) ∈ Er.

For the rest of the proofs, I restrict attention to acceptance sets E such that e = 1 ̸∈ E.

6.4 Proof of Proposition 1

Proposition 1:
Fix some E ⊂ (0, ∞]. Let m∗ = ((σm∗

θ , ρm∗
θ )θ∈{l,h}) be obedient wrt E. Then m∗ ∈ Mr

E if
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and only if m∗ is such that
ρm∗

h =
∫

E

[
dσm∗

h (e|h)−
(

1 − 1
e

)
dσm∗

l (e|h)
]
, ρm∗

l =
∫

E dσm∗
l (e|l) and solves the following

optimization problem:

max
(σm

h (.|h),σm
l (.|h))∈∆([0,∞])×∆([0,∞])

µ
∫

E
dσm

h (e|h) +
∫

E

(
1
e
− µ

)
dσm

l (e|h)

subject to ∫
E

(
1 − 1

e

)
dσm

h (e|h) ≥
∫

E

(
1 − 1

e

)
dσm

l (e|h) ≥ 0∫
E′ dσm

h (e|h)∫
E′ dσm

l (e|l)
≥ 1

l(µ)
for all E′ ⊂ E ∪ supp(σl(.|l))

Proof. To prove the proposition I will first show that the low type has zero surplus in any
m ∈ Mr

E. The certifier’s optimization problem is given by:

max
m∈M

µρm
h + (1 − µ)ρm

l

such that ∫
E
[dσm

h (e|h)− dσm
l (e|h)] ≥ ρm

h − ρm
l ≥

∫
E

1
e
[dσm

h (e|h)− dσm
l (e|h)]

∫
E

dσm
h (e|h) ≥ ρm

h and
∫

E

1
e

dσm
l (e|h) ≥ ρm

l∫
E′ dσm

h (e|h)∫
E′ dσm

l (e|l)
≥ 1

l(µ)
for all E′ ⊂ E

For revenue maximization, either low type or high type IR constraint needs to be bind-
ing. When the low type’s IR constraint is binding the optimization problem reduces
to the one in the proposition. This follows from substituting ρm

l =
∫

E
1
e dσm

l (e|h) and

ρm
h =

∫
E dσm

h (e|h) -
∫

E

(
1 − 1

e

)
dσm

l (e|h).
Thus, to prove the proposition, we first show that the low type never earns rent
in a revenue-maximizing menu. Consider for contradiction a revenue-maximizing
menu χ ∈ M that offers the low type positive rent, then ρ

χ
l =

∫
E

1
e dσ

χ
l (e|h) −

max{
∫

E

(
1
e − 1

)
dσ

χ
h (e|h), 0} and ρ

χ
h =

∫
E dσ

χ
h (e|h). In particular χ is a solution to

max
(σm

h (.|h),σm
l (.|h))∈∆([0,∞])×∆([0,∞])

(1 − µ)
∫

E

1
e

dσm
l (e|h) +

∫
E

(
1 − 1 − µ

e

)
dσm

h (e|h)
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such that ∫
E

(
1 − 1

e

)
dσm

h (e|h) ≥
∫

E

(
1 − 1

e

)
dσm

l (e|h)

0 ≥
∫

E

(
1 − 1

e

)
dσm

l (e|h)∫
E′ dσm

h (e|h)∫
E′ dσm

l (e|l)
≥ 1

l(µ)
for all E′ ⊂ E

When the low type earns positive rent, i.e.
∫

E

(
1
e − 1

)
dσ

χ
h (e|h) > 0, it must be that:∫

E dσ
χ
l (e|h) = 1 − ε for some ε > 0. Moreover, there must exist some El ⊂ E such that

e ∈ El ⊂ E∩ [0, 1], El is closed and
∫

El
dσ

χ
l (e|h) > 0. As σ

χ
h (e|h)

σ
χ
l (e|h)

≥ 1
el(µ) for all e ∈ E we have

that
∫

El
dσ

χ
h (e|h) > 0. Then by corollary 2 we get that there must be some Eh ⊂ E ∩ [0, 1]

such that
∫

Eh
dσ

χ
h (e|h) > 0. Fix some arbitrary eh ∈ Eh and define el := min(El).

Note that
∫

E
1
e dσ

χ
h (e|h) = 1 when the rent to low type is strictly positive, as otherwise,

the certifier can increase revenue by slightly increasing the probability of eh in high
type’s menu option. In particular if

∫
E σ

χ
h (e|h) < 1 and

∫
E

1
e dσ

χ
h (e|h) >

∫
E dσ

χ
h (e|h) then∫

Ec dσ
χ
h (e|h) >

∫
Ec dσ

χ
h (e|l) > 0; then the certifier can improve his payoff by offering a

menu with experiments (σ′
h, σ′

l ). Where (σ′
h, σ′

l ) is such that σ′
l = σ

χ
l , and for some eh ∈ E∩

[1, ∞] and κ > 0 small we have σ′
h(eh|h) = σ

χ
h (eh|h) + κ min{eh

∫
Ec σ

χ
h (e|l),

∫
Ec σ

χ
h (e|h)},

σ′
h(∞|h) = σ

χ
h (∞|h) + κ max{[

∫
Ec σ

χ
h (e|h)− eh

∫
Ec σ

χ
h (e|l)], 0}, and σ′

h(e|h) = σ
χ
h (e|h) for

all e ∈ E \ {eh, ∞}.
Now to show low type can not earn positive rent construct σ′

θ : {l, h} → ∆[0, ∞] such
that σ′

θ(e|θ′) = σ
χ
θ (e|θ

′) for all θ, θ′ and e ∈ E \ (El ∪ {eh}). Moreover, set σ′
h(eh|h) =

σ
χ
h (eh|h) +

∫
El

δ
el(µ)dσ

χ
l (e|h), dσ′

h(e|h) = dσ
χ
h (e|h) −

δ
el(µ)dσ

χ
l (e|h), σ′

l (eh|h) = σ
χ
l (eh|h) +

δ
∫

El
dσ

χ
l (e|h) and σ′

l (e|h) = (1 − δ)σχ
l (e|h) whenever e ∈ El. Let ρ′h = ρ

χ
h and ρ′l = ρ

χ
l +

δ
∫

El

(
1

el(µ) − 1
) (

1
e −

1
eh

)
dσ

χ
l (e|h). Define χ′ := ((σ′

h, ρ′h), (σ
′
l , ρ′l)). Choose δ > 0 small

enough such that
∫

E

(
1 − 1

e

)
dσ′

l (e|h) ≥
∫

E

(
1 − 1

e

)
dσ′

l (e|h) and 0 ≥
∫

E

(
1 − 1

e

)
dσ′

l (e|h).
By construction, we also get that

rev(χ′)− rev(χ) = (1 − µ)δ
∫

El

(
1

el(µ)
− 1
)(

1
e
− 1

eh

)
dσ

χ
l (e|h) > 0

This concludes the claim that the low type doesn’t earn positive rents.
The proof then follows from noting that

∫
E

(
1 − 1

e

)
dσh(e|h) ≥ 0 =⇒∫

E

(
1 − 1

e

)
dσl(e|h) ≥ 0. Consider for contradiction that

∫
E

(
1 − 1

e

)
dσh(e|h) ≥ 0 and∫

E

(
1 − 1

e

)
dσl(e|h) < 0. Then the constraint

∫
E′ dσh(e|h)∫
E′ dσl(e|l)

≥ 1
l(µ) is not biding for some
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E′ ⊂ E. If instead, the constraint dσh(e|h)
dσl(e|l)

≥ 1
l(µ) is binding for all e ∈ E the following

calculation gives us a contradiction:∫
E

(
1
e
− 1
)

dσl(e|h) > 0

=⇒
∫

E
(1 − e) dσh(e|h) > 0

=⇒
∫

E∩{e>1}

(
1
e
− 1
)

dσh(e|h) +
∫

E∩{e<1}
(1 − e) dσh(e|h) > 0

But ∫
E

(
1 − 1

e

)
dσh(e|h) ≥ 0

=⇒
∫

E∩{e>1}

(
1
e
− 1
)

dσh(e|h) +
∫

E∩{e<1}

(
1 − e

e

)
dσh(e|h) ≤ 0

=⇒
∫

E∩{e>1}

(
1
e
− 1
)

dσh(e|h) +
∫

E∩{e<1}
(1 − e) dσh(e|h) ≤ 0

Finally, the claim follows from the fact that if both the following statements are true
then the certifier has a profitable deviation.

∃e′ ∈ E such that
dσh(e′|h)
dσl(e′|h)

>
1

e′l(µ)

and ∫
E

(
1 − 1

e

)
dσl(e|h) < 0

The profitable deviation is constructed by considering a menu that provides the same
experiment to the high type and at the same cost. But the menu option for low type is
changed and priced slightly higher. The low types’s new experiment (σ̃l) has the same
distribution for e ∈ E \ {e′}. But the probability of signal e′ in the low type’s menu
option is increased by shifting mass from the set EC, until either dσ̃h(e′|h)

dσ̃l(e′|h)
= 1

e′l(µ) or∫
E

(
1 − 1

e

)
dσ̃l(e|h) = 0.

To construct such a deviation, note that
∫

E dσl(e|h) <
∫

E
1
e dσl(e|h) < l(µ), thus we have

that 0 <
∫

Ec
1
e dσl(e|h) <

∫
Ec dσl(e|h).

Whenever
∫

Ec dσl(e|l) − 1
e′
∫

Ec dσl(e|h) ≥ 0 then σ̃l can be constructed such that
for some κ > 0; σ̃l(e′|h) = σl(e′|h) + κ

∫
Ec dσl(e|h), σ̃l(0|l) = σ(0|l) +

κ
[∫

Ec dσl(e|l)− 1
e′
∫

Ec dσl(e|h)
]

and σ̃l(e|h) = σl(e|h) for all e ̸∈ {e′, 0}.
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If
∫

Ec dσl(e|l)− 1
e′
∫

Ec dσl(e|h) < 0 there exists some E′ ⊂ Ec such that
∫

E′ dσl(e|h) > 0
and e ∈ E′ implies e > e′, in this case for choose small enough κ1, κ2 > 0 such that
κ1
∫

E′ dσl(e|l) + κ2
∫

El
dσl(e|l) = 1

e′

(
κ1
∫

E′ dσl(e|h) + κ2
∫

El
dσl(e|h)

)
. Define σ̃l(e′|h) =

σl(e′|h) + κ1
∫

E′ dσl(e|h) + κ2
∫

El
dσl(e|h), σ̃l(e|h) = (1− κ1)σl(e|h) for all e ∈ E′, σ̃l(e|h) =

(1 − κ2)σ
′
l (e|h) for all e ∈ El and σ̃l(e|h) = σl(e|h) for all e ̸∈ {e′} ∪ E′ ∪ El. Thus in the

optimal menu
∫

E

(
1 − 1

e

)
dσl(e|h) ≥ 0.

6.5 Proof of Corollary 1

Corollary 1:
If m ∈ Mr

E and rev(m) > 0 for some E ⊂ [0, ∞] then
∫

E dσm
h (e|h) = 1.

Proof. Following proposition 1, if m ∈ Mr
E then it solves the optimal program

mentioned before. In particular, if
∫

E dσm
h (e|h) < 1 then implementablity requires∫

E
1
e dσm

h (e|h) ≤
∫

E dσm
h (e|h) ≤ 1 − ε for some ε > 0. Thus there exist Eh, El ⊂ EC

such that 0 <
∫

Eh
dσm

h (e|h),
∫

El
dσm

h (e|l) ≤ ε. By lemma 5 we get that there ex-
ists e′ > 1 ∈ E (if ∞ ∈ E then let e′ = ∞). If

∫
Eh∩El

σm
h (e|h),

∫
Eh∩El

σm
h (e|l) > 0

then the certifier has a profitable deviation thus m ̸∈ Mr
E. To construct a prof-

itable deviation of the certifier, we consider a menu m′ such that the low type’s pay-
ment and experiment are equal to the low type’s payment and experiment under
the menu m. For the high type if 1

e′
∫

Eh∩El
σm

h (e|h) ≤
∫

Eh∩El
σm

h (e|l) let σm′
h (e|h) :=

σm
h (e|h) whenever e ∈ E \ {e′}, σm′

h (e′|h) := σm
h (e′|h) +

∫
Eh∩El

σm
h (e|h) and ρm′

h :=

ρm
h +

∫
Eh∩El

σm
h (e|h). When 1

e′
∫

Eh∩El
σm

h (e|h) >
∫

Eh∩El
σm

h (e|l), let σm′
h (e|h) := σm

h (e|h)
whenever e ∈ E \ {e′, ∞}, σm′

h (e′|h) := σm
h (e′|h) + e′

∫
Eh∩El

σm
h (e|l), σm′

h (∞|h) :=

σm
h (∞|h) +

[∫
Eh∩El

σm
h (e|h)− e′

∫
Eh∩El

σm
h (e|l)

]
, and ρm′

h := ρm
h + e′

∫
Eh∩El

σm
h (e|h). If in-

stead
∫

Eh∩El
σm

h (e|h) = 0, then σm
h (∞|h), σm

h (0|l) > 0. Choose δ > 0 small enough such

that σm
h (∞|h) > δ, σm

h (0|l) > δ
e′ . The certifier has a profitable deviation m′ such that σm′

l :=
σm

l , ρm′
l := ρm

l , σm′
h (e|h) := σm

h (e|h) whenever e ∈ E \ {e′}, σm′
h (e′|h) := σm

h (e′|h) + δ and
ρm′

h = ρm
h + δ. The menu m′ ∈ ME for all the cases above by construction. Thus the

corollary follows from contradiction.

6.6 Separating Equilibrium

Corollary 2: If an equilibrium ((Em)m∈M), m∗) ∈ Er is separating then e∗ := inf(Em∗) ≥
1
µ . Moreover, if for an equilibrium ((Em)m∈M), m∗) ∈ Er it holds that e∗ := inf(Em∗) > 1

µ ,
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then the equilibrium is separating.

Proof. Sufficiency: Let ((Em)m∈M), m∗) ∈ Er. If Em∗ is such that e ∈ Em∗ implies that e ≥ 1
then by applying proposition 1 we get that m∗ needs to be a solution to

max
(σm

h (.|h),σm
l (.|h))∈∆([0,∞])×∆([0,∞])

µ
∫

Em∗
dσm

h (e|h) +
∫

Em∗

(
1
e
− µ

)
dσm

l (e|h)

subject to ∫
Em∗

(
1 − 1

e

)
dσm

h (e|h) ≥
∫

Em∗

(
1 − 1

e

)
dσm

l (e|h) ≥ 0

dσm
h (e|h) ≥ 1

el(µ)
dσm

l (e|h) for all e ∈ Em∗

The non-negativity constraint in the IC conditions is irrelevant as e > 1 for all
e ∈ Em∗ . Now notice that if e∗ ≥ 1

µ then the revenue of the certifier is decreasing in
dσm

l (e|h) for all e ∈ Em∗ . This means that the low type’s menu option assigns zero
probability to the set Em∗ . In particular, the revenue maximizing menu m∗ is such that∫

Em∗ dσm∗
h (e|h) = 1, ρm∗

h = 1, σm∗
l = Φ, ρm∗

l = 0. This menu is separating. Notice when
e∗ > 1

µ then the revenue is strictly decreasing in σm∗
l (e|h) for all e ∈ Em∗ thus the menu

with
∫

Em∗ dσm∗
h (e|h) = 1, ρm∗

h = 1, σm∗
l = Φ, ρm∗

l = 0 is uniquely optimal.
For necessity, let ((Em)m∈M), m∗) ∈ Er be a separating equilibrium. I will show that if

there exists e ∈ Em∗ such that e < 1
µ then m∗ ̸∈ Mr

Em∗ .
Case I: There exists 0 < el < 1 ∈ Em∗ . As m∗ is separating so by lemma 5 we get that there
exists some eh > 1 ∈ Em∗ . Now consider the following menu: χ = ((σθ, ρθ))θ∈{l,h}. Where

σ
χ
h (eh|h) = eh(1−el)

eh−el
, σ

χ
h (el|h) = el(eh−1)

eh−el
, ρh = 1 and σ

χ
l (eh|h) = l(µ)el

eh(1−el)
eh−el

, σ
χ
l (el|h) =

l(µ)el
el(eh−1)

eh−el
, ρl = el l(µ). Observe that χ ∈ MEm∗ , and rev(χ) = µ + (1 − µ)l(µ)el. The

claim follows from noting that the revenues from a separating menu is bounded above
by µ.
Case II: e ∈ E implies e > 1 and there exists eh ∈ E such that 1

µ > eh > 1. If eh ≥ 1
l(µ) ,

the certifier can improve revenue by offering the same menu option to both types. This is
σh = σl where σh(eh|h) = 1, σh(eh|l) = 1

eh
and ρh = ρl =

1
eh

.
If eh < 1

l(µ) . The certifier can improve the revenue by offering a menu such that σh(eh|h) =
1, σl(eh|h) = ehl(µ) and ρh = 1 − l(µ)(eh − 1), ρl = l(µ).
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6.7 Proof of Theorem 1

Theorem 1: If ((Em)m∈M, m∗) ∈ Er such that Em∗ is countable, then there exists an
outcome equivalent equilibrium ((E′

m)m∈M, m′) ∈ Er such that m′ ∈ cvx(T (Em∗)).

Combining corollary 1, the constraint
∫

E

(
1 − 1

e

)
dσθ(e|h) ≥ 0 and remark 2. We get

that it suffices to consider menus such that supp(σθ(.|l))∩ EC ⊂ {0, 1}. With this in mind,
I restrict the space of choices from ∆([0, ∞])× ∆([0, ∞]) to Λ, where

Λ := {(ηh, ηl) ∈ ∆([0, ∞])× ∆([0, ∞])| supp(ηθ) ∩ EC = {1}}

Λ is a closed and convex set16

For each E ⊂ [0, ∞]. The set of feasible17 signal distributions wrt E is given by KE ⊂
Λ. Where KE is the set of signal distributions (ηh, ηl) ∈ Λ such that∫

E

(
1 − 1

e

)
dηh(e) ≥

∫
E

(
1 − 1

e

)
dηl(e)

∫
E

(
1 − 1

e

)
dηl(e) ≥ 0∫

E
dηh(e) = 1

and ∫
E′

dηh(e) ≥
∫

E′

1
el(µ)

dηl(e) for all E′ ⊂ E

The first claim establishes the existence, in terms of restrictions on E, of a maximizer
of some linear functional over KE.

Claim 1. For any ε > 0 and E ⊂ [ε, ∞] \ {1} closed, the set KE is compact and convex.

Proof. [0, ∞] is a compact Polish space, thus ∆([0, ∞]) is compact and Polish. Using the
topology of weak convergence on ∆([0, ∞]) and appropriately defined product topology
on ∆([0, ∞]) × ∆([0, ∞]).18 If (ηn

h , ηn
l ) → (ηh, ηl)in the product topology then ηn

h →w

16The topology here is product topology, where the topology on each component is the topology of weak
convergence.

17The requirement of feasibility wrt E is stronger than obedience wrt E as feasibility builds in revenue-
maximizing properties that are discussed in proposition 1.

18Product of compact and polish spaces is compact and polish. A closed subset of such a space is also
compact and polish. Moreover, the product of locally convex spaces is also locally convex.
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ηh and ηn
l →w ηl in ∆([0, ∞]). Noting that 1 − 1

e and 1
el(µ) are continuous and bounded on

[ε, ∞].19 Thus weak convergence of measures ηn
h and ηn

l give us convergence of following
integrals

lim
n→∞

∫
E

(
1 − 1

e

)
dηn

θ (e) =
∫

E

(
1 − 1

e

)
dηθ(e)

and,

lim
n→∞

[∫
E′

dηn
h (e)−

∫
E′

1
el(µ)

dηn
l (e)

]
=
∫

E′
dηh(e)−

∫
E′

1
el(µ)

dηl(e) for all E′ ⊂ E

As (ηn
h , ηn

l ) ∈ KE, the above implies that (ηh, ηl) ∈ KE. Thus KE is closed and hence
compact. The convexity follows from noting that the KE is defined by elements of
∆([0, ∞]) × ∆([0, ∞]) that satisfy certain linear inequalities. Thus any convex combina-
tion of elements in KE also satisfies these linear inequalities. This proves the claim.

A consequence of the claim and Krein–Milman theorem is that the set of extreme
points ex(KE) is nonempty. As a convention if some functional f doesn’t attain its maxi-
mum in the set KE, then arg max

KE

{ f (ηh, ηl)} = ∅. For all the following statements in the

proof, I assume that E is countable. In particular, the support of all the relevant distribu-
tions is discreet.20

Let T (KE) := {(ηh, ηl) ∈ KE| | supp(ηh) ∩ E| ≤ 3, | supp(ηl) ∩ E| ≤ 2}.

Claim 2. If E ∩ [0, 1] = ∅ then arg max
KE

{µ
∫

E dηh(e) +
∫

E

(
1
e − µ

)
dηl(e)} ⊂ T (KE).

Proof. Let (η∗
h , η∗

l ) ∈ arg max
KE

{µ
∫

E dηh(e) +
∫

E

(
1
e − µ

)
dηl(e)}. By solving the op-

timization problem in proposition 1 (see proof of corollary 2 for example), we get
that | supp(η∗

h) ∩ E| > 1 only if η∗
l (1) = 1, in which case we can write (η∗

h , η∗
l ) =

∑e∈E ηh(e)(ηe
h, ηe

l ). Where ηe
l = η∗

l and ηe
h(e) = 1 for all e ∈ E.

In particular if (η′
h, η′

l) ∈ arg max
KE

{µ
∫

E dηh(e) +
∫

E

(
1
e − µ

)
dηl(e)} are such that

supp(ηh) ∩ [0, 1] ∩ E = ∅ then (η′
h, η′

l) ∈ arg max
KE\[0,1]

{µ
∫

E dηh(e) +
∫

E

(
1
e − µ

)
dηl(e)}.

19This requires E to be bounded away from 0
20The proofs can be extended to continuous distribution, the arguments presented rely on discreet sup-

port distributions mostly for exposition reasons.
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Claim 3. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. If supp(ηh) ∩ E ∩

[0, 1] ̸= ∅ then supp(ηl) ∩ E ∩ [0, 1] ̸= ∅.

Proof. Consider for contradiction supp(ηh)∩ E ∩ [0, 1] ̸= ∅ and supp(ηl)∩ E ∩ [0, 1] = ∅.
Let El ⊂ E∩ [0, 1] be such that

∫
El

dηh(e) > 0, fix some el ∈ El. By assumption
∫

El
dηl(e) =

0. Let Eh ⊂ E ∩ [1, ∞] be such that
∫

Eh
dηl(e) > 0, fix some eh ∈ Eh.

First, consider the case when ηl(1) = 0, then we get that
∫

E dηh(e) =
∫

E dηl(e) = 1
and

∫
E

1
e dηl ≥

∫
E

1
e dηh. As dηl(e)

dηh(e)
≤ el(µ) for all e ∈ E, we get that

∫
E

1
e dηl(e) ≤ l(µ).

Now construct η′
h, η′

l such that η′
h = ηh and η′

l(e) = ηl(e) for all e ̸∈ {el, eh}. Let η′
l(eh) =

ηl(eh)− ε, η′
l(el) = ηl(el) + ε, and 1 −

∫
E

1
e dη′

l(e) = 1 −
∫

E
1
e dηl(e)− ε

(
1
el
− 1

eh

)
. For small

enough ε > 0 we get that (η′
h, η′

l) ∈ KE and

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= µε

(
1
el
− 1

eh

)
> 0

This is a contradiction, thus it must be that
∫

El
dηl(e) > 0.

Now, consider the case when ηl(1) > 0. Construct η′
h, η′

l such that for all e ̸∈
{eh, 1} ∪ El we have η′

θ(e) = ηθ(e). Let η′
h(eh) = ηh(eh) + ε

∫
El

dηh(e), η′
l(eh) =

ηl(eh) + εehl(µ)
∫

El
dηh(e), η′

h(e) = (1 − ε)ηh(e) for all e ∈ El, η′
l(e) = ηl(e) for all

e ∈ El \ {el}, η′
l(el) = ηl(el) + εl(µ) (eh−1)el

1−el

∫
El

dηh(e), η′
h(1) = ηh(1), 1 −

∫
E∪{1}

1
e dη′

h(e) =

1 −
∫

E∪{1}
1
e dηh(e) + ε

∫
El

(
1
e −

1
eh

)
dηh(e), 1 −

∫
E∪{1}

1
e dη′

l(e) = 1 −
∫

E∪{1}
1
e dηl(e), and

η′
l(1) = ηl(1) − εl(µ) eh−el

1−el

∫
El

dηh(e). For small enough ε > 0 we get that (η′
h, η′

l) ∈ KE

and
µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)εl(µ)
eh − el
1 − el

∫
El

dηh(e) > 0

This is a contradiction, thus it must be that
∫

El
dηl(e) > 0.

For the rest of the claims let supp(ηl) ∩ E ∩ [0, 1] ̸= ∅.
Partition KE into KE

0 and KE
1 . Where KE

0 := {(ηh, ηl) ∈ KE|
∫

E

(
1 − 1

e

)
dηl(e) = 0}, and

KE
1 = KE \ KE

1 .

Claim 4. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. If supp(ηl) ∩ E ∩

[0, 1] ̸= ∅ and
∫

E

(
1 − 1

e

)
dηl(e) > 0, then supp(ηl) ∩ E ∩ ( 1

l(µ) , ∞] = ∅ or | supp(ηl) ∩ E ∩
[1, ∞]| = 1.
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Proof. Note that supp(ηl) ∩ E ∩ [0, 1] ̸= ∅ implies that there is some el ∈ E ∩ [0, 1]
such that ηh(el) > ηl(el) > 0. By assumption we have

∫
E

(
1 − 1

e

)
dηl(e) > 0. As∫

E

(
1 − 1

e

)
(dηh(e) − dηl(e)) ≥ 0, we get that

∫
E

(
1 − 1

e

)
dηh(e) > 0. For contradiction

let there be some e′, eh ∈ E ∩ [1, ∞] such that e′ < eh, ηl(eh) > 0, and 1
l(µ) < eh.

Now construct η′
h, η′

l such that η′
θ(e) = ηθ(e) for e ̸∈ {eh, e′, 0, 1}. Let η′

h(eh) = ηh(eh)−
ε, η′

h(e
′) = ηh(e′)+ ε, 1−

∫
E dη′

h(e) = 1−
∫

E dηh(e)−
(

1
e′ −

1
eh

)
ε, η′

l(eh) = ηl(eh)− ehl(µ)ε,
η′

l(e
′) = ηl(e′) + e′l(µ)ε, η′

l(1) = ηl(1) + εl(µ)(eh − e′), and 1−
∫

E dη′
l(e) = 1−

∫
E dηl(e)−

l(µ)ε(eh − e′). For small enough ε > 0, we get (η′
h, η′

l) ∈ KE as(
1 − 1

eh

)
ε(ehl(µ)− 1)−

(
1 − 1

e′

)
ε(l(µ)e′ − 1)

= ε(eh − e′)
(

l(µ)− 1
ehe′

)
> 0

Finally, note that

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dη∗

h(e) +
∫

E

(
1
e
− µ

)
dη∗

l (e)

= µεl(µ)(eh − e′) > 0

A direct consequence of claim 4 is that for any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +∫
E

(
1
e − µ

)
dη̃l(e)}, if supp(ηl) ∩ E ∩ [0, 1] ̸= ∅, then ηl(1) > 0.

Claim 5. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. Such that

supp(ηl) ∩ E ∩ [0, 1] ̸= ∅. If | supp(ηh) ∩ E ∩ [1, ∞]| ≥ 2 then for any e′, eh ∈ supp(ηh) ∩
E ∩ [1, ∞], e′ < eh implies that ηl(eh)

ηh(eh)
= 0 or ehl(µ), and if ηl(eh)

ηh(el)
= ehl(µ) then ηl(e′)

ηh(e′)
= e′l(µ).

Proof. Note that supp(ηl) ∩ E ∩ [0, 1] ̸= ∅ implies that there is some el ∈ E ∩ [0, 1] such
that ηh(el) > ηl(el) > 0. In particular, by claim 4 we have ηl(1) > 0.

First, for contradiction assume that 0 < ηl(eh)
ηh(eh)

< ehl(µ). Construct (η′
h, η′

l) such that for
all e ̸∈ {1, 0, eh, el, e′} we have η′

θ(e) = ηθ(e). Let η′
h(eh) = ηh(eh)− ε, η′

h(el) = ηh(el)− δ,
η′

h(e
′) = ηh(e′) + ε + δ, η′

l(eh) = ηl(eh) − εψ, η′
l(el) = ηl(el) − el l(µ)δ, η′

l(e
′) = ηl(e′) +

εψ + el l(µ)δ + κ, and η′
l(1) = ηl(1) − κ. Where κ = 1

e′−1(εψ
(

1 − e′
eh

)
− δl(µ)(e′ − el)),
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ψ > ηl(eh)
ηh(eh)

, ε > δ e′−el
eh−e′

l(µ)eh
ψ and δ > 0. By choosing ψ, ε, and δ close enough to the lower

bounds mentioned respectively we get that (η′
h, η′

l) ∈ KE, by construction we see that

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)κ > 0

Now consider e′ < eh where ηl(e′)
ηh(e′)

̸= e′l(µ). Construct η′
h, η′

l such that η′
h(e) = ηh(e)

for all e ∈ [0, ∞]. For e ̸∈ {eh, e′, el, 1} let η′
l(e) = ηl(e). Let η′

l(eh) = ηl(eh) − ε,
η′

l(el) = ηl(el) − δ, η′
l(1) = ηl(1) − κ and η′

l(e
′) = ηl(e′) + ε + δ + κ. Where κ =

e′
e′−1

(
ε
(

1
e′ −

1
eh

)
− δ

(
1
el
− 1

e′

))
, ε > δ

(e′−el)eh
(eh−e′)el

and δ > 0. By choosing ε and δ close enough
to the lower bounds mentioned respectively we get that (η′

h, η′
l) ∈ KE, by construction we

see that

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)κ > 0

Following claim 5, I proceed by dividing the proof into two cases. First, I consider
(ηh, ηl) ∈ arg max

KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}, such that supp(ηl) ∩ E ∩ [0, 1] ̸=

∅ and ηl(e)
ηh(e)

= el(µ) for all e ∈ E ∩ [1, ∞]. Second, I consider the case (ηh, ηl) ∈

arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}, such that supp(ηl)∩ E ∩ [0, 1] ̸= ∅ and ηl(e)

ηh(e)
<

el(µ) for some e ∈ E ∩ [1, ∞]. Before proceeding I will first prove some claims that sim-
plify the optimization problem.

Claim 6. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e)+
∫

E

(
1
e − µ

)
dη̃l(e)}, such that supp(ηl)∩

E ∩ [0, 1] ̸= ∅. If
∫

E

(
1 − 1

e

)
dηl(e) = 0 then

∫
E

(
1 − 1

e

)
dηl(e) =

∫
E

(
1 − 1

e

)
dηl(e).

Proof. Fix some (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} such that supp(ηl) ∩

E ∩ [0, 1] ̸= ∅. The proof follows in two steps:
The first argument is similar to the last part of the proof of proposition 1. We want

to show that if
∫

E

(
1 − 1

e

)
dηl(e) = 0 then there exist some eh ∈ supp(ηh) ∩ E ∩ [1, ∞]

such that ηl(eh)
ηh(eh)

< ehl(µ). Whenever
∫

E

(
1 − 1

e

)
dηl(e) = 0 we have that there exists
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El ⊂ supp(ηl) ∩ E ∩ [0, 1] such that
∫

El
dηl(e) > 0. Assume for contradiction that for all

e ∈ supp(ηh) ∩ E ∩ [1, ∞] we have ηl(eh)
ηh(eh)

= el(µ). Then it follows that

l(µ)
∫

E∩[1,∞]
(e − 1)dηh(e) =

∫
E∩[0,1]

(
1
e
− 1
)

dηl(e) ≤ l(µ)
∫

E∩[0,1]
(1 − e)dηh(e)

Feasibility further requires that∫
E∩[0,1]

1
e

dηh(e) +
∫

E∩[1,∞]

1
e

dηh(e) ≤ 1

=⇒
∫

E∩[0,1]

(
1
e
− 1
)

dηh(e) ≤
∫

E∩[1,∞]

(
1 − 1

e

)
dηh(e)

Now note that
∫

E∩[0,1]

(
1
e − 1

)
dηh(e) >

∫
E∩[0,1](1 − e)dηh(e) and∫

E∩[1,∞]

(
1 − 1

e

)
dηh(e) <

∫
E∩[1,∞](e − 1)dηh(e). Thus, we have a contradiction.

For the second argument, we want to show that if 0 =
∫

E

(
1 − 1

e

)
ηl <

∫
E

(
1 − 1

e

)
ηh

then for any Eh ⊂ supp(ηh) ∩ E ∩ [1, ∞], we have
∫

Eh
dηl(e) = l(µ)

∫
Eh

edηh(e). As-
sume for contradiction that there is some Eh ⊂ [1, ∞] ∩ E such that

∫
Eh

dηh(e) > 0 and∫
Eh

dηl(e) < l(µ)
∫

Eh
edηh(e), in particular Eh can be chosen such that dηl(e)

dηh(e)
< el(µ) for all

e ∈ Eh. Also, note that there is some el ∈ E ∩ [0, 1].
Construct η′

h, η′
l such that for all e ̸∈ Eh ∪ {el, 1, 0} we have η′

θ(e) = ηθ(e). Define
η′

h(e) = (1 − ε)ηh(e) for all e ∈ Eh, η′
h(el) = ηh(el) + ε

∫
Eh

dηh(e), 1 −
∫

E dη′
h(e) =

1 −
∫

E dηh(e) − ε
∫

Eh

(
1
el
− 1

e

)
dηh(e), η′

l(e) =
(

1 + εl(µ) e(1−el)
e−1

ηh(e)
ηl(e)

)
ηl(e) for all e ∈ Eh,

η′
l(el) = ηl(el) + εl(µ)el

∫
Eh

dηh(e), η′
l(1) = ηl(1)− εl(µ)

∫
Eh

e−el
e−1 dηh(e). By choosing ε > 0

small enough, we get that (η′
h, η′

l) ∈ KE, and

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)εl(µ)
∫

Eh

e − el
e − 1

dηh(e) > 0

A consequence of claim 6 is that, if (ηh, ηl) ∈ arg max
KE

0

{µ
∫

E dη̃h(e)+
∫

E

(
1
e − µ

)
dη̃l(e)}

and supp(ηl) ∩ E ∩ [0, 1] ̸= ∅ then by there is some eh ∈ supp(ηh) ∩ E ∩ [1, ∞] such that
ηl(eh)
ηh(eh)

< ehl(µ).
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Claim 7. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. Such that

supp(ηl) ∩ E ∩ [0, 1] ̸= ∅. If
∫

E

(
1 − 1

e

)
ηl <

∫
E

(
1 − 1

e

)
ηh then for any eh ∈ supp(ηh) ∩

E ∩ [1, ∞], ηl(eh)
ηh(eh)

= ehl(µ).

Proof. Note that supp(ηl) ∩ E ∩ [0, 1] ̸= ∅ implies that there is some el ∈ E ∩ [0, 1] such
that ηh(el) > ηl(el) > 0. In particular, ηl(1) > 0. For contradiction let ηl(eh)

ηh(el)
< el(µ).

Construct η′
h, η′

l such that for all e ̸∈ {eh, el, 1, 0} we have η′
θ(e) = ηθ(e). Define η′

h(eh) =

ηh(eh) − ε, η′
h(el) = ηh(el) + ε, 1 −

∫
E dη′

h(e) = 1 −
∫

E dηh(e) − δ, η′
l(eh) = ηl(eh) + p,

η′
l(el) = ηl(el) + κ − p, η′

l(1) = ηl(1) − κ. Where κ = p eh−el
(1−el)eh

, p = εel l(µ)
(1−el)eh

eh−1 ,

δ = ε eh−el
ehel

, ε > 0. By choosing ε close enough to 0 we get that (η′
h, η′

l) ∈ KE, and

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)κ > 0

In particular for (ηh, ηl) ∈ arg max
KE

1

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}, such that

supp(ηl) ∩ E ∩ [0, 1] ̸= ∅ and ηl(e)
ηh(e)

< el(µ) for some e ∈ E ∩ [1, ∞], it must be that∫
E

(
1 − 1

e

)
ηl =

∫
E

(
1 − 1

e

)
ηh.

Claim 8. For any (ηh, ηl) ∈ arg max
KE

1

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. Whenever el ∈

supp(ηh) ∩ E ∩ [0, 1] then ηl(el) = el l(µ).

Proof. Assume for contradiction there is some el < 1 such that ηl(el) < el l(µ)ηh(el). As
(ηh, ηl) ∈ KE

1 we get that 1 −
∫

E∪{1}
1
e dηl(e) > 0. Construct η′

h, η′
l such that η′

h = ηh

and η′
l(e) = ηl(e) for all e ̸∈ {eh, el}. Let η′

l(eh) = ηl(eh) − ε, η′
l(el) = ηl(el) + ε, 1 −∫

E∪{1}
1
e dη′

l(e) = 1 −
∫

E∪{1}
1
e dηl(e)− ε

(
1
el
− 1

eh

)
. By choosing ε > 0 small enough we get

that (η′
h, η′

l) ∈ KE
1 and

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)ε

(
1
el
− 1

eh

)
> 0

Thus the claim follows from contradiction.
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Claim 9. For any (ηh, ηl) ∈ arg max
KE

0

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. If | supp(ηl) ∩ E ∩

[0, 1]| > 1, then ηl(e)
ηh(e)

= l(µ)e for all e ∈ supp(ηh) ∩ E ∩ [0, 1].

Proof. If (ηh, ηl) ∈ arg max
KE

0

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} then by claim 6 there is some

eh ∈ supp(ηh)∩ E ∩ [1, ∞] such that ηl(eh)
ηh(eh)

< ehl(µ). Let e′ < el ∈ supp(ηh)∩ E ∩ [0, 1], for
contradiction assume that
Case I: ηl(e′) < e′l(µ)ηh(e′). Construct (η′

h, η′
l) such that η′

θ(e) = ηθ(e) for all e ̸∈
{eh, el, e′, 1, 0}. Let η′

h(eh) = ηh(eh) − ε, η′
h(e

′) = ηh(e′) − δ, η′
h(el) = ηh(el) + ε + δ,

η′
l(eh) = ηl(eh) + q, η′

l(e
′) = ηl(e′), η′

l(el) = ηl(el) + κ − q, η′
l(1) = ηl(1) − κ. Where

ε < el−e′
eh−el

eh
e′ δ, κ = q

eh
+ l(µ)(ε + δ), q = 1−el

eh−1(ε + δ)ehl(µ), and δ > 0. Choosing ε close to
the upper bound and δ close to 0 gives that (η′

h, η′
l) ∈ KE

0 .

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)κ > 0

Case II: ηl(el) < el l(µ)ηh(el). Construct (η′
h, η′

l) such that η′
θ(e) = ηθ(e) for all e ̸∈

{eh, el, e′, 1, 0}. Let η′
h(eh) = ηh(eh) + ε, η′

h(el) = ηh(el) − δ − ε, η′
h(e

′) = ηh(e′) + δ,
η′

l(eh) = ηl(eh) + κ − δe′l(µ), η′
l(e

′) = ηl(e′) + δe′l(µ), η′
l(el) = ηl(el), η′

l(1) = ηl(1)− κ.
Where ε > max{ el−e′

eh−el

eh
e′ δ, 1−el

eh
δ}, κ = δl(µ) eh−el

eh−1 , and δ > 0. Choosing ε close to the upper
bound and δ close to 0 gives that (η′

h, η′
l) ∈ KE

0 .

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)κ > 0

Now we are ready to prove the main result needed for the proof of Theorem 1:

Proposition 2. arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} ⊂ cvx(T (KE)).

Proof. As mentioned before, I prove this result in two cases
Case I: (ηh, ηl) ∈ argmaxKE{µ

∫
E dη̃h(e) +

∫
E

(
1
e − µ

)
dη̃l(e)} such that supp(ηl) ∩ E ∩

[0, 1] ̸= ∅ and ηl(e)
ηh(e)

= el(µ) for all e ∈ supp(ηh) ∩ E ∩ [1, ∞].
In this case, by proof of claim 7, it must be that (ηh, ηl) ∈ KE

1 . Let WI be the set of
(ηh, ηl) that satisfy the conditions of case I. Claims 10 -12 establish this case.
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Claim 10. For some (ηh, ηl) ∈ arg max
KE

1

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. If supp(ηl)∩ E ∩

[0, 1] ̸= ∅, then ηl(e)
ηh(e)

≤ 1 for all e ∈ E.

Proof. By claim 4 either supp(ηl) ∩ E ∩ [ 1
l(µ) , ∞] = ∅ or | supp(ηl) ∩ E ∩ [1, ∞]| = 1.

If supp(ηl) ∩ E ∩ [1, ∞] = {eh} then by
∫

E

(
1 − 1

e

)
(ηh(e) − dηl(e)) ≥ 0 we get that

ηl(eh)
ηh(eh)

≤ 1.

If supp(ηh) ∩ E ∩ [ 1
l(µ) , ∞] = ∅ then the claim follows from noting ηl(e)

ηh(e)
≤ el(µ) for all

e ∈ E.

Define

K̃E
1 := {(ηh, ηl) ∈ WI | |supp(ηh)∩E∩ [0, 1]| ≤ 1 and

ηh(e)
ηl(e)

= el(µ) for all e ∈ supp(ηh)∩E∩ [1, ∞]}

Claim 11. For any E we have arg max
WI

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} ⊂ cvx(K̃E

1 ).

Proof. Fix (ηh, ηl) ∈ arg max
WI

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. Assume that | supp(ηh) ∩

E ∩ [0, 1]| > 2. By claim 8 we get that ηl(e) = el(µ)ηh(e) for all e ∈ supp(ηh) ∩ E ∩ [0, 1].
By assumption and claim 5 we know that for any e > 1 ∈ E, ηh(e) > 0 =⇒ ηl(e)

ηh(e)
=

el(µ). Pick some el ∈ supp(ηh) ∩ E ∩ [0, 1] Now construct the following (η′
h, η′

l) and
(η′′

h , η′′
l ):

η′
θ(e) =

αηθ(e)
α
∫

E∩[1,∞] dηh(e) + ηh(el)
for all e ∈ E ∩ [1, ∞]

η′
θ(el) =

ηθ(el)

α
∫

E∩[1,∞] dηh(e) + ηh(el)

η′′
θ (e) =

(1 − α)ηθ(e)
(1 − α)

∫
E∩[1,∞] dηh(e) +

∫
E∩[0,1]\{el} dηh(e)

for all e ∈ E ∩ [1, ∞]

η′′
θ (e) =

ηθ(e)
(1 − α)

∫
E∩[1,∞] dηh(e) +

∫
E∩[0,1]\{el} dηh(e)

for all e ∈ E ∩ [0, 1] \ {el}

Note that
∫

E∩[1,∞] dηl(e)∫
E∩[1,∞] dηh(e)

≤ 1 as WI ⊂ KE
1 , this implies

∫
E∩[1,∞] dη′

l (e)∫
E∩[1,∞] dη′

h(e)
≤ 1 and

∫
E∩[1,∞] dη′′

l (e)∫
E∩[1,∞] dη′′

h (e)
≤

1. Thus to show that (η′
h, η′

l), (η′′
h , η′′

l ) ∈ WI . We need to verify the following sets of
inequalities can be satisfied simultaneously:
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(
1
el
− 1
)

ηl(el)∫
E∩[1,∞]

(
1 − 1

e

)
dηl(e)

< α <

∫
E∩[1,∞]

(
1 − 1

e

)
dηl(e) +

∫
E∩[0,1]\{el}

(
1 − 1

e

)
dηl(e)∫

E∩[1,∞]

(
1 − 1

e

)
dηl(e)(

1
el
− 1
)
(ηh(el)− ηl(el))∫

E∩[1,∞]

(
1 − 1

e

)
(dηh(e)− dηl(e))

≤ α

α ≤

∫
E∩[1,∞]

(
1 − 1

e

)
(dηh(e)− dηl(e)) +

∫
E∩[0,1]\{el}

(
1 − 1

e

)
(dηh(e)− dηl(e))∫

E∩[1,∞]

(
1 − 1

e

)
(dηh(e)− dηl(e))

The first two inequalities are satisfied simultaneously for some α as (ηh, ηl) ∈ KE
1 .

Similarly, the third and fourth inequalities also hold simultaneously. Finally, note that the
third inequality implies the first one as(

1
el
− 1
)

ηl(el)∫
E∩[1,∞]

(
1 − 1

e

)
dηl(e)

<

(
1
el
− 1
)
(ηh(el)− ηl(el))∫

E∩[1,∞]

(
1 − 1

e

)
(dηh(e)− dηl(e))

iff (
1
el
− 1
)

ηl(el)
∫

E∩[1,∞]

(
1 − 1

e

)
dηh(e) <

(
1
el
− 1
)

ηh(el)
∫

E∩[1,∞]

(
1 − 1

e

)
dηl(e)

which follows from ∫
E∩[1,∞]

(
1 − 1

e

) [
ηl(el)

ηh(el)
− ηl(e)

ηh(e)

]
dηh(e)

= l(µ)
∫

E∩[1,∞]

(
1 − 1

e

)
[el − e] dηh(e) < 0

Also, the fourth inequality implies the second one as∫
E∩[0,1]\{el}

(
1 − 1

e

)
dηl(e)

∫
E∩[1,∞]

(
1 − 1

e

)
dηh(e)

>
∫

E∩[0,1]\{el}

(
1 − 1

e

)
dηh(e)

∫
E∩[1,∞]

(
1 − 1

e

)
dηl(e)

This follows as∫
E∩[0,1]\{el}

(
1
e′
− 1
) [∫

E∩[1,∞]

(
1 − 1

e

) [
ηl(e′)
ηh(e′)

− ηl(e)
ηh(e)

]
dηh(e)

]
dηh(e′)
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= l(µ)
∫

E∩[0,1]\{el}

(
1
e′
− 1
) [∫

E∩[1,∞]

(
1 − 1

e

) [
e′ − e

]
dηh(e)

]
dηh(e′) < 0

Thus we can always choose α ∈ [0, 1] that satisfies the requirements. Thus we get
that (η′

h, η′
l) ∈ K̃E

1 and (η′′
h , η′′

l ) ∈ WI . Recursively applying this argument proves the
claim.

Let B(KE) := {(ηh, ηl) ∈ KE| | supp(ηh) ∩ E| ≤ 2}

Claim 12. K̃E
1 ⊂ cvx(B(KE)).

Proof. If supp(ηh) ∩ [0, 1] = ∅ then (ηh, ηl) = ∑e∈E ηh(e)(ηe
h, ηe

l ). Where ηe
l (e) = ηl(e)

ηh(e)
,

ηe
l (1) = 1 − ηl(e)

ηh(e)
and ηe

h(e) = 1 for all e ∈ E.
If supp(ηh) ∩ [0, 1] = {el}. The claim follows when | supp(ηh) ∩ [1, ∞]| = 1. Assume

that | supp(ηh) ∩ [1, ∞]| > 1, also for any e > 1 ∈ E, ηh(e) > 0 =⇒ ηl(e)
ηh(e)

= el(µ). Pick
some eh ∈ supp(ηh) ∩ [1, ∞]. Now construct the following (η′

h, η′
l) and (η′′

h , η′′
l ):

η′
θ(eh) =

dηθ(eh)

αηh(el) + ηh(eh)

η′
θ(el) =

αdηθ(el)

αηh(el) + ηh(e)h)

η′′
θ (e) =

dηθ(e)
(1 − α)ηh(el) +

∫
E∩[1,∞]\{eh} dηh(e)

for all e ∈ E ∩ [1, ∞] \ {eh}

η′′
θ (el) =

(1 − α)η(el)

(1 − α)ηh(el) +
∫

E∩[1,∞]\{eh} dηh(e)

By claim 10 we know that ηl(e)
ηh(e)

≤ 1 for all e ∈ E. Thus to show that (η′
h, η′

l), (η
′′
h , η′′

l ) ∈
K̃E

1 . We need to verify the following sets of inequalities can be satisfied simultaneously:(
1 − 1

eh

)
ηl(eh)(

1
el
− 1
)

ηl(el)
> α >

(
1
el
− 1
)

ηl(el) +
∫

E∩[1,∞]\{eh}

(
1
e − 1

)
dηl(e)(

1
el
− 1
)

ηl(el)(
1 − 1

eh

)
(ηh(eh)− dηl(eh))(

1
el
− 1
)
(ηh(el)− ηl(el))

≥ α

α ≥

∫
E∩[1,∞]\{eh}

(
1
e − 1

)
(dηh(e)− dηl(e)) +

(
1
el
− 1
)
(ηh(el)− ηl(el))(

1
el
− 1
)
(ηh(el)− ηl(el))
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Note that as (ηh, ηl) ∈ K̃E
1 , the first and second inequalities hold simultaneously for

some α, also the third and fourth inequalities hold simultaneously. The claim follows from
noting that the third inequality implies the first one and the fourth inequality implies the
second one. Third implies the first as

ηl(eh)

ηh(eh)
= l(µ)eh > l(µ)el =

ηl(el)

ηh(el)

and the fourth inequality implies the second one as∫
E∩[1,∞]\{eh}

(
1 − 1

e

)
(dηl(e))∫

E∩[1,∞]\{eh}

(
1 − 1

e

)
(dηh(e))

≥ l(µ) > l(µ)el =
ηl(el)

ηh(el)

Thus we can always choose α ∈ [0, 1] that satisfies the requirements. Thus we get
that (η′

h, η′
l) ∈ B(KE) and (η′′

h , η′′
l ) ∈ K̃E

1 . Recursively applying this argument proves the
claim.

The proof of the first case then follows from noting that by definition B(KE) ⊂ T (KE).

Case II: (ηh, ηl) ∈ argmaxKE{µ
∫

E dη̃h(e)+
∫

E

(
1
e − µ

)
dη̃l(e)} such that supp(ηl)∩ E∩

[0, 1] ̸= ∅ and ηl(e)
ηh(e)

< el(µ) for some e ∈ supp(ηh) ∩ E ∩ [1, ∞].

In this case, by proof of claims 6 and 7, it must be that
∫

E

(
1 − 1

e

)
dηh(e) =∫

E

(
1 − 1

e

)
dηl(e).

Claim 13. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} such that

supp(ηl) ∩ E ∩ [0, 1] ̸= ∅. If there exists some e ∈ supp(ηh) ∩ E ∩ [1, ∞] such that
ηl(e)
ηh(e)

< el(µ) then | supp(ηl) ∩ E ∩ [1, ∞]| = 1.

Proof. Assume that there exists e4 < 1 ∈ E such that ηl(e4) > 0. Assume for contradiction
that | supp(ηl) ∩ E ∩ [1, ∞]| > 1, then there exist e2, e3 ∈ supp(ηl) ∩ E ∩ [1, ∞] where
e2 > e3. By claim 5 we get that ηl(e2)

ηh(e2)
= e2l(µ) and ηl(e3)

ηh(e3)
= e3l(µ). By assumption and

claim 5 we get that there exists e1 ∈ supp(ηh)∩ E∩ [1, ∞] such that e1 > e2 and ηl(e1) = 0.
Construct (η′

h, η′
l) such that η′

θ(e) = ηθ(e) for all e ̸∈ {e1, e2, e3, e4, 1}. Let η′
h(e1) =

ηh(e1)− q, η′
h(e2) = ηh(e2)− ε, η′

h(e4) = ηh(e4)− δ, η′
h(e3) = ηh(e3) + q + ε + δ, η′

l(e1) = 0,
η′

l(e2) = ηl(e2) − εe2l(µ), η′
l(e4) = ηl(e4) − δe4l(µ), η′

l(e3) = ηl(e3) + (q + ε + δ)e3l(µ),

and η′
l(1) = ηl(1)− ql(µ). Where ε = κq

e1−e3
e1

+
e3−1

e4

(e2−e3)
(

1
e4
− 1

e2

) , δ = q 1
e3−e4

[
κ

e1−e3
e1

+
e3−1

e2
+

e3−1
e4

(κ−1)
1
e4
− 1

e2

]
.
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By choosing some κ > 1 and q > 0 small enough we get that (η′
h, η′

l) ∈ KE. The claim
follows by noting that

µ
∫

E
dη′

h(e) +
∫

E

(
1
e
− µ

)
dη′

l(e)− µ
∫

E
dηh(e)−

∫
E

(
1
e
− µ

)
dηl(e)

= (1 − µ)ql(µ) > 0

Claim 14. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. If | supp(ηh ∩ E ∩

[1, ∞]| = 1, then | supp(ηl) ∩ E ∩ [0, 1]| = 1.

Proof. Let (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}, such that supp(ηh ∩ E ∩

[1, ∞] = {eh} and ηl(eh)
ηh(eh)

< ehl(µ). Assume for contradiction | supp(ηl) ∩ E ∩ [0, 1]| > 1,

then by claim 13 we get that ηl(e)
ηh(e)

= el(µ) for all e ∈ supp(ηh) ∩ E ∩ [0, 1]. By proof of

claim 6 and 7 we conclude that
∫

E

(
1 − 1

e

)
dηh(e) =

∫
E

(
1 − 1

e

)
dηl(e). Also by corollary

1 we get that ηh(eh) = 1 −
∫

E∩[0,1] dηh(e). Combining these we get that

ηl(eh) = ηh(eh)−
eh

eh − 1

∫
E∩[0,1]

(
1
e
− 1
)
(1 − el(µ))dηh(e)

The feasibility constraint can then be simplified as

1 −
∫

E∩[0,1]

(
1 +

eh(1 − e)
e(eh − 1)

)
dηh(e) ≥ 0

The above defines a half space for the feasible choice of ηh. As the ηl is determined com-
pletely by the choice of ηh, the objective function can be expressed as a linear functional
of ηh alone. In particular, the extreme points of the feasible region are candidate solutions
for the optimal ηh. These extreme points are such that either ηh(eh) = 1 or ηh(e) =

e(eh−1)
eh−e

for some e ∈ E ∩ [0, 1] and zero for all other e′ ∈ E ∩ [0, 1]. In particular notice that at
optimum | supp(ηl) ∩ E ∩ [0, 1]| = 1.

Define K̃E
0 as the set of all (ηh, ηl) ∈ KE such that | supp(ηh) ∩ E ∩ [1, ∞]| ≤ 2 and

∃ e ∈ supp(ηh) ∩ E ∩ [1, ∞] such that ηl(e)
ηh(e)

< el(µ)
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Claim 15. For any (ηh, ηl) ∈ arg max
KE

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} such that

supp(ηl) ∩ E ∩ [0, 1] ̸= ∅. If there exists some e ∈ supp(ηh) ∩ E ∩ [1, ∞] such that
ηl(e)
ηh(e)

< el(µ) then (ηh, ηl) ∈ cvx(K̃E
0 ).

Proof. Define E0 = {e ∈ E ∩ [1, ∞] | e ∈ supp(ηh) \ supp(ηl)}. If |E0| = 1, then the claim
follows from claim 13. Assume that |E0| > 1. By claim 13 we get that | supp(ηl) ∩ E ∩
[1, ∞]| = 1.

Pick some eh ∈ E0. Now construct the following (η′
h, η′

l) and (η′′
h , η′′

l ):

η′
θ(eh) =

ηθ(eh)

α
∫

E\E0
dηh(e) + ηh(eh)

η′
θ(e) =

αηθ(e)
α
∫

E\E0
dηh(e) + ηh(eh)

for all e ∈ E \ E0

η′′
θ (e) =

ηθ(e)
(1 − α)

∫
E\E0

dηh(e) +
∫

E0\{eh} dηh(e)
for all e ∈ E0 \ {eh}

η′′
θ (e) =

(1 − α)ηθ(e)
(1 − α)

∫
E\E0

dηh(e) +
∫

E0\{eh} dηh(e)
for all e ∈ E \ E0

When α =

(
1− 1

eh

)
ηh(eh)∫

E\E0
( 1

e −1)(dηh(e)−dηl(e))
, we get that

∫
E\(E0\{eh})

(
1 − 1

e

)
(dη′

h(e) −

dη′
l(e)) =

∫
E\eh

(
1 − 1

e

)
(dη′′

h (e) − dη′′
l (e)) = 0. Moreover, by construction∫

E\(E0\{eh})

(
1 − 1

e

)
dη′

l(e),
∫

E\eh

(
1 − 1

e

)
dη′′

l (e) ≥ 0. Finally (η′
h, η′

l) ∈ KE and (η′′
h , η′′

l ) ∈
KE follows from noting the following:∫

E\E0

dηh(e)− dηl(e) ≥
∫

E\E0

(1 − el(µ))dηh(e)

>
∫

E\E0

(1 − e)dηh =
∫

E\E0

l(µ)e
l(µ)

(
1
e
− 1
)

dηh(e)

=
1

l(µ)

∫
E\E0

(
1
e
− 1
)

dηl(e) ≥ 0

=⇒
∫

E
dη′

l(e),
∫

E
η′′

l (e) < 1

Define

T (KE) := {(ηh, ηl) ∈ KE| | supp(ηh) ∩ E| ≤ 3, | supp(ηl) ∩ E| ≤ 2}
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Claim 16. arg max
K̃E

0

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)} ⊂ T (KE).

Proof. Fix some (η∗
h , η∗

l ) ∈ arg max
K̃E

0

{µ
∫

E dη̃h(e) +
∫

E

(
1
e − µ

)
dη̃l(e)}. Assume that

| supp(η∗
l ) ∩ E ∩ [0, 1]| ≥ 2 otherwise the claim is trivial. When | supp(η∗

h) ∩ E ∩ [1, ∞]| <
2, the claim follows from claim 14. Assume that supp(ηh) ∩ E ∩ [1, ∞] = {e, eh}, where
eh < e. We get by claim 5, claim 8, and claim 9 that η∗

l (e) = el(µ) for all e ∈ E \ {e} and
η∗

l (e) = 0. Thus we get the following:

ηh(eh) ≥
1

eh − 1

∫
E∩[0,1]

(1 − e)dηh(e)

ηh(e) = 1 −
∫

E\e
dηh(e)

and ∫
E

(
1 − 1

e

)
dηh(e) =

∫
E

(
1 − 1

e

)
dηl(e)

=⇒ ηh(eh) =
1 − 1

e +
∫

E∩[0,1]

(
l(µ)(1 − e)−

(
1
e −

1
e

))
dηh(e)

1
eh
− 1

e + l(µ)(eh − 1)

and

=⇒ ηh(e) = 1 −
1 − 1

e
1
eh
− 1

e + l(µ)(eh − 1)
−
∫

E∩[0,1]

l(µ)(eh − e)−
(

1
e −

1
he

)
1
eh
− 1

e + l(µ)(eh − 1)

In particular, the feasibility requires

1
eh

− 1
e
+ l(µ)(eh − 1)

(1)
≥ 1 − 1

e
+
∫

E∩[0,1]

(
l(µ)(1 − e)−

(
1
e
− 1

e

))
dηh(e)

(2)
≥ 0

(
l(µ)− 1

eh

)
(eh − 1)

(3)
≥
∫

E∩[0,1]

(
l(µ)− 1

eeh

)
(eh − e)dηh(e)

1
(4)
≥ 1

(e − 1)(eh − 1)

∫
E∩[0,1]

(
(1 − e)(e − eh)

eh
+

(e − e)(eh − 1)
e

)
dηh(e)

Note that (4) =⇒ (2), also (2) & (3) =⇒ (1), also note that (4) simplifies to 1 ≥∫
E∩[0,1]

eh−e
eh−1

(
e(eh−1)+e(e−eh)

ehe(e−1)

)
dηh(e) and that eh−e

eh−1

(
e(eh−1)+e(e−eh)

ehe(e−1)

)
> 1 for all e ∈ E∩ [0, 1].

If l(µ) ≥ 1
eh

then (4) =⇒ (3). This follows from:
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l(µ)− 1
eeh

l(µ)− 1
eh

≤ e(eh − 1) + e(e − eh)

ehe(e − 1)
for all e ∈ E ∩ [0, 1]

Denote the first coordinate of K̃E
0 by JE

0 . Thus the optimization problem can be relaxed
as

max
ηh∈JE

0

T(ηh)

such that G(ηh) ≥ 0

Where G(ηh) ≥ 0 defines a closed convex half space as G(ηh) = 1 −∫
E∩[0,1]

eh−e
eh−1

(
e(eh−1)+e(e−eh)

ehe(e−1)

)
dηh(e). The feasible region G(ηh) ≥ 0 is closed and

convex with extreme points given by ηh such that
∫

E∩[0,1] dηh(e) = 0 or ηh(e) =

eh−1
eh−e

(
ehe(e−1)

e(eh−1)+e(e−eh)

)
for some e ∈ E ∩ [0, 1] and ηh(e′) = 0 for all e′ ∈ E ∩ [0, 1] \ {e}.

If l(µ) < 1
eh

then (3) is given by

1 ≤
∫

E∩[0,1]

l(µ)− 1
eeh

l(µ)− 1
eh

eh − e
eh − 1

dηh(e)

Thus the optimization problem is given by

max
ηh∈JE

0

T(ηh)

such that G(ηh) ≥ 0

H(ηh) ≥ 0

Where H(ηh) =
∫

E∩[0,1]

l(µ)− 1
eeh

l(µ)− 1
eh

eh−e
eh−1 dηh(e)− 1. The halfspaces defined by (3) and (4) have

none empty intersection as

l(µ)− 1
eeh

l(µ)− 1
eh

>
e(eh − 1) + e(e − eh)

ehe(e − 1)
for all e ∈ E ∩ [0, 1]

Thus, the feasible region {ηh|G(ηh) ≥ 0 ≥ −H(ηh)} is closed, nonempty and convex with

extreme points given by ηh such that ηh(e) =
eh−1
eh−e

(
ehe(e−1)

e(eh−1)+e(e−eh)

)
or ηh(e) =

l(µ)− 1
eh

l(µ)− 1
eeh

eh−1
eh−e

for some e ∈ E∩ [0, 1] and ηh(e′) = 0 for e′ ∈ E∩ [0, 1] \ {e}. Here the first type of extreme
points are on the hyperplane G(ηh) = 0 and the second type lies on the hyperplane
H(ηh) = 0.
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The objective

T(ηh) = µ
∫

E
dηh(e) +

∫
E\{e}

(
1
e
− µ

)
el(µ)dηh(e)

= constant +
∫

E∩[0,1]
l(µ)

(
(1 − µh)

l(µ)(1 − e)− 1
e +

1
e

1
eh
− 1

e + l(µ)(eh − 1)
+ (1 − eµ)

)
dηh(e)

This is linear in ηh thus the optimum is achieved at an extreme point, thus we prove the
claim as for any extreme point it holds that | supp(ηh) ∩ E ∩ [0, 1]| ≤ 1.

Claims 10 -12 establish case I, and claims 13 - 16 establish case II. Thus, proposition 2
follows by combining these with claims 2 and 3.

Theorem 1 follows from Proposition 2 by constructing the menu such that σh(.|h) =

ηh(.) and σh(.|h) = ηl(.) with payments according to Proposition 1.

6.8 Corollary 3

I prove a stronger statement than the statement of Corollary 3 presented in the text. In
particular, I prove a characterization of equilibrium with binary acceptance set. The first
two experiment structures are enumerated in the case when soft information overrides
hard information.

Lemma 5. If E = {eh, el}, where el < 1 and eh > 1. Then (σh, σl) ∈ KE if and only if it has the
following form:
If eh ≤ min{ 1

l(µ) , 1
µ} and 1

µ+(1−µ)l(µ)el
≥ eh

σh eh(1−el)
eh−el

1−l(µ)el
1−l(µ)ehel

el(eh−1)
eh−el

1−l(µ)eh
1−l(µ)ehel

0
1−el
eh−el

1−l(µ)el
1−l(µ)ehel

eh−1
eh−el

1−l(µ)eh
1−l(µ)ehel

l(µ)(eh+el−ehel−1)
1−l(µ)ehel


σlehl(µ) eh(1−el)

eh−el

1−l(µ)el
1−l(µ)ehel

el l(µ)
el(eh−1)

eh−el

1−l(µ)eh
1−l(µ)ehel

1 − l(µ)
[
el − eh(1 − el)

1−l(µ)el
1−l(µ)ehel

]
0

ehl(µ) 1−el
eh−el

1−l(µ)el
1−l(µ)ehel

el l(µ)
eh−1
eh−el

1−l(µ)eh
1−l(µ)ehel

1 − l(µ)
[
el − eh(1 − el)

1−l(µ)el
1−l(µ)ehel

]
l(µ) (eh−1)(1−el)

1−l(µ)ehel


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If eh > 1
µ or if 1

l(µ) < eh ≤ 1
µ and 1

eh
≤ µ + (1 − µ)el l(µ) or if eh ≤ min{ 1

l(µ) , 1
µ} and

1
µ+(1−µ)l(µ)el

< eh

σh eh(1−el)
eh−el

el(eh−1)
eh−el

1−el
eh−el

eh−1
eh−el


σlel l(µ)

eh(1−el)
eh−el

el l(µ)
el(eh−1)

eh−el
1 − l(µ)el

el l(µ)
1−el
eh−el

el l(µ)
eh−1
eh−el

1 − l(µ)el


and, if 1

l(µ) < eh ≤ 1
µ and 1

eh
> µ + (1 − µ)el l(µ)

σh=σl 1 0
1
eh

1 − 1
eh


Proof. A binary menu wrt E = {eh(> 1), el(< 1)} is of the form the following form for
some x ∈ (0, 1].

σh

 x 1 − x 0
x
eh

1−x
el

1 − x
eh
− 1−x

el



σl

 αx β(1 − x) 1 − αx − β(1 − x) 0

α x
eh

β 1−x
el

1 − αx − β(1 − x) α
(

1 − 1
eh

)
x + β

(
1 − 1

el

)
(1 − x)


Thus, the optimization problem in Proposition 1 is simplified to

max µ +

(
1
eh

− µ

)
αx +

(
1
el
− µ

)
β(1 − x)

subject to
1) x ∈ [0, 1], 2) 1

eh
x + 1

el
(1 − x) ≤ 1, 3) αx

(
1 − 1

eh

)
+ β(1 − x)

(
1 − 1

el

)
≥ 0, 4)

αx + β(1 − x) ≤ 1, 5) αx
(

1 − 1
eh

)
+ β(1 − x)

(
1 − 1

el

)
≥ 0, 6) α ≤ min{ehl(µ), 1} and

7) β ≤ l(µ)el

Note that 2) 1
eh

x + 1
el
(1 − x) ≤ 1 implies x ≥ eh(1−el)

eh−el
. 3) αx

(
1 − 1

eh

)
+ β(1 −

x)
(

1 − 1
el

)
≥ 0 implies β ≤ α

el(eh−1)
eh(1−el)

x
1−x . 4) αx + β(1 − x) ≤ 1, implies that

α ≤ 1 − eh(1−el)
el(eh−1)

1−x
x (1 − β).

If 1
eh

< µ then the revenue is decreasing in α and x. Setting x = eh(1−el)
eh−el

, we get

that α = β by 3) and 4). Thus the revenue is µ +
(

1
el
− µ − eh(1−el)

eh−el

(
1
el
− 1

eh

))
β = µ +(

1
el
− µ − 1−el

el

)
β. Thus revenue is increasing in β. Hence the optimal experiment is such

that σh(eh) =
eh(1−el)

eh−el
and α = β = el l(µ).
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If l(µ) > 1
eh

> µ the revenue is increasing in α. Thsu or fixed x, β we have α =

min{ehl(µ), 1− eh(1−el)
el(eh−1)

1−x
x (1− β)}. As ehl(µ)) > 1 we get that α = 1− eh(1−el)

el(eh−1)
1−x

x (1− β)

Then the revenue is given by:

µ + (1 − eh(1 − el)

el(eh − 1)
1 − x

x
(1 − β))x

(
1
eh

− µ

)
+

(
1
el
− µ

)
β(1 − x)

= µ− eh(1 − el)

el(eh − 1)

(
1
eh

− µ

)
+ β

(
1
el
− µ

)
+ x

[(
1
eh

− µ

)
(1 +

eh(1 − el)

el(eh − 1)
(1 − β))− β

(
1
el
− µ

)]

= µ − eh(1 − el)

el(eh − 1)

(
1
eh

− µ

)
+ β

(
1
el
− µ

)
+x
[(

1
eh

− µ

)(
1 +

eh(1 − el)

el(eh − 1)

)
− β

(
1
el
− µ +

eh(1 − el)

el(eh − 1)

(
1
eh

− µ

))]

= µ − eh(1 − el)

el(eh − 1)

(
1
eh

− µ

)
+ β

(
1
el
− µ

)
+ x

eh − el
el(eh − 1)

[
1
eh

− µ − β(1 − µ)

]
Whenever 1

eh
− µ − β(1 − µ) > 0 then the revenue is increasing in x, thus the optimal

experiment is such that x = 1 and α = 1. Whenever 1
eh
− µ − β(1 − µ) < 0 then revenue

is decreasing in x for fixed β. Thus x = eh(1−el)
eh−el

, this gives us that the optimal experiment

is such that σh(eh) =
eh(1−el)

eh−el
and α = β = el l(µ).

If eh ≤ 1
µ , 1

l(µ) , the revenue is increasing in β and α. For fixed x, α, we get that β =

min{el(l(µ), α
el(eh−1)
eh(1−el)

x
1−x}. If β = α

el(eh−1)
eh(1−el)

x
1−x , then the revenue is given by

µ + xα

[
1
eh

− µ +

(
1
el
− µ

)
el(eh − 1)
eh(1 − el)

]
= µ + αx

eh − el
eh(1 − el)

(1 − µ)

The expression is increasing in x. As α
el(eh−1)
eh(1−el)

x
1−x < el l(µ) we get that

x ≤ l(µ)eh(1 − el)

α(eh − 1) + l(µ)eh(1 − el))

As the revenue is increasing in both α and x, thus for fixed α set x = l(µ)eh(1−el)
α(eh−1)+l(µ)eh(1−el)

.
Then the revenue is given by

µ + (1 − µ)l(µ)α
eh − el

α(eh − 1) + l(µ)eh(1 − el)
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This expression is increasing in α. As x ≥ eh(1−el)
eh−el

we get that

l(µ)eh(1 − el)

α(eh − 1) + l(µ)eh(1 − el)
≥ eh(1 − el)

eh − el

=⇒ l(µ)(eh − el) ≥ α(eh − 1) + l(µ)eh(1 − el)

=⇒ α ≤ l(µ)el

Thus the optimal experiment has x = eh(1−el)
eh−el

and α = β = el l(µ).
If β = el l(µ) then the revenue is increasing in α and x. In particular for fixed x we
get that xα ≥ (1 − x) eh(1−el)

el(eh−1) and α = min{ehl(µ), 1 − eh(1−el)
el(eh−1)

1−x
x (1 − el l(µ))}. For x ≥

eh(1−el)
eh−el

1−l(µ)el
1−l(µ))eleh

, we get that α = ehl(µ), in which case the revenue is

µ + el l(µ)
(

1
el
− µ

)
+ l(µ)xµ(el − eh)

this is decreasing in x thus it’s optimal to set x = eh(1−el)
eh−el

1−l(µ)el
1−l(µ))eleh

, α = ehl(µ) and β =

el l(µ).
If x < eh(1−el)

eh−el

1−l(µ)el
1−l(µ))eleh

we get α = 1 − eh(1−el)
el(eh−1)

1−x
x (1 − el l(µ)), then the revenue is

given by

= µ − eh(1 − el)

el(eh − 1)

(
1
eh

− µ

)
+ β

(
1
el
− µ

)
+ x

eh − el
el(eh − 1)

[
1
eh

− µ − β(1 − µ)

]
Whenever 1

eh
− µ − β(1 − µ) > 0 then the revenue is increasing in x, thus the optimal

experiment is such that x = eh(1−el)
eh−el

1−l(µ)el
1−l(µ))eleh

, α = ehl(µ) and β = el l(µ). Whenever
1
eh
− µ − β(1− µ) < 0 then revenue is decreasing in x. Thus x = eh(1−el)

eh−el
, this gives us that

the optimal experiment is such that σh(eh) =
eh(1−el)

eh−el
and α = β = el l(µ).

Finally to conclude note that for eh ≤ 1
l(µ) , 1

µ the revenue for x = eh(1−el)
eh−el

1−l(µ)el
1−l(µ))eleh

,
α = ehl(µ) and β = el l(µ) is given by

µ + (1 − µ)l(µ)− µl(µ)
(eh − 1)(1 − el)

1 − l(µ)ehel

revenue when x = eh(1−el)
eh−el

and α = β = el l(µ) is given by

µ + (1 − µ)l(µ)el

Note that
µ + (1 − µ)l(µ)− µl(µ)

(eh − 1)(1 − el)

1 − l(µ)ehel
≥ µ + (1 − µ)l(µ)el
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⇐⇒ (1 − µ) ≥ µ
eh − 1

1 − l(µ)ehel

⇐⇒ 1 ≥ eh(µ + (1 − µ)l(µ)el)

6.9 Corollary 4: Existence of Partial Pooling

By Theorem 1, Corollary 2, and Lemma 6, we get that if m is a menu with partial pool-
ing, then it must be that m ∈ cvx(T (E)) \ cvx(B(E)). Thus, I will focus on menus in
the set T (E) \ B(E). by proposition 3 we get that i f m ∈ Mr

E ∩ [T (E) \ B(E)] then
supp(σm(.|h)) ∩ E = {e, eh, el} and supp(σm(.|l)) ∩ E = {eh, el} where e > eh > 1 >

el. Also, σm(eh|l)
σm(eh|h)

= ehl(µ). To establish existence I will assume min{l(µ), µ + (1 −
µ)l(µ) ehe(e−1)

e(eh−1)+e(e−eh)
} ≥ 1

eh
. Thus by proof of claim 16, we get the optimal menu has

the following form for some x ∈ (0, 1].

σh

1 − x − y y x
1−x−y

e
y
eh

x
el



σl

0 yehl(µ) βx 1 − yehl(µ)− βx
0 yl(µ) βx

el
1 − yehl(µ)− βx


In particular we get that β = eh−1

1−el
el

y
x l(µ) and y =

1− 1
e −
(

1
el
− 1

e

)
x

1
eh
− 1

e
. The revenue is given

by

µ + (1 − µ)l(µ)y
eh − el
1 − el

Note that we need x + y ≤ 1, ehl(µ)y + βx ≤ 1 and β ≤ el l(µ). Form ehl(µ)y + βx ≤ 1
we get that

l(µ)y
(

eh +
eh − 1
1 − el

el

)
≤ 1

=⇒ y ≤ 1
l(µ)

1 − el
eh − el

=⇒ x ≥
1 − 1

e −
1

l(µ)
1−el
eh−el

(
1
eh
− 1

e

)
1
el
− 1

e

From β ≤ l(µ)el we get that

1 − 1
e
−
(

1
el
− 1

e

)
x ≤ x

(
1
eh

− 1
e

)
1 − el
eh − 1

44



=⇒ x ≥
1 − 1

e(
1
el
− 1

e

)
+
(

1
eh
− 1

e

)
1−el
eh−1

From x + y ≤ 1 we get that
1 − 1

e −
(

1
el
− 1

eh

)
x

1
eh
− 1

e
≤ 1

=⇒ x ≥
1 − 1

eh
1
el
− 1

eh

=
el(eh − 1)

eh − el

The revenue is decreasing in x and the following inequalities hold 1− 1
e(

1
el
− 1

e

)
+
(

1
eh
− 1

e

)
1−el
eh−1

≤

1− 1
e(

1
el
− 1

e

)
+
(

1
eh
− 1

e

)
1−el
eh−1

≤ 1 and
1− 1

e −
1

l(µ)
1−el
eh−el

(
1
eh
− 1

e

)
1
el
− 1

e
≤ 1. Note that 1− 1

e(
1
el
− 1

e

)
+
(

1
eh
− 1

e

)
1−el
eh−1

≥

1− 1
e −

1
l(µ)

1−el
eh−el

(
1
eh
− 1

e

)
1
el
− 1

e
whenever l(µ) ≤ el(e−eh)+e(eh−1)

(e−1)eleh
. Finally by noting that

el(e−eh)+e(eh−1)
(e−1)eleh

≥ 1 we get that x =
1− 1

e(
1
el
− 1

e

)
+
(

1
eh
− 1

e

)
1−el
eh−1

, y =
1− 1

e(
1
el
− 1

e

)
eh−1
1−el

+
(

1
eh
− 1

e

) and

β = l(µ)el.
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