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Abstract

We study the design of mechanisms by an intermediary that generates in-
formation for a sender to persuade a receiver about an unknown attribute of
the sender. The sender is initially privately, but imperfectly, informed about
her attribute, and the receiver takes an action based on posterior beliefs about
the sender’s attribute and the sender’s belief about the attribute. The mech-
anism generates information for the sender and also controls its disclosure
to the receiver. The design of the optimal mechanism needs to screen the
privately informed sender and thus confronts incentive-compatibility con-
straints. The mechanism also deals with obedience constraints, as the inter-
mediary must generate just enough information to persuade the receiver. We
characterize incentive-compatible mechanisms for a wide class of problems
when the sender contracts with the intermediary. We use this characteriza-
tion to study profit-maximizing mechanisms in three applications: the design
of college-admissions tests, the optimal use of consumer data on a digital
market platform, and the optimal design of credit rating schemes.

1 Introduction

In recent decades, economic theory has developed sophisticated tools to study the
extent to which information provision can affect the behavior and interaction of
economic agents. Yet much of the attention has been focused on scenarios where
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the provision of information is through commitment, an omniscient (information)
designer, or other exogenous considerations. This precludes environments where
agents have to acquire information, often at a cost and from an intermediary. We
study a general class of problems in which an intermediary sells an information pol-
icy to a privately but imperfectly informed sender who will interact ex post with a
receiver. The allocation mechanism must be incentive-compatible, which restricts
what information is available to the sender. The design of information subject to
incentive compatibility of the allocation mechanism is the pervasive theme of this
paper. We specialize our theoretical framework to study profit-maximizing infor-
mation policies in three instances: quality signaling with tests, monopoly pricing
on online platforms, and risk mitigation through credit rating.

In our first application, we consider a firm that designs a college admissions test
and sets a price to students for taking the test. The design of the test can reveal
more or less information about the student’s ability. Variations in the informa-
tiveness of the test affect how the college uses the test in admissions decisions,
and this affects the student’s willingness to pay for the test. In addition to these
tradeoffs, the students have prior private (but imperfect) information about their
ability and this translates into private information about how they will perform
on the test and thus how much they are willing to pay for the test. The design of
the test must therefore grapple with screening frictions. These screening frictions
are novel owing to the particular features of a test as a screening instrument.

Next we consider the design of a data policy by a digital market platform. The
platform can use the data it collects about users to estimate consumers’ values for
new products. This information is useful both to the consumers on the platform
(to improve their purchase decisions) and to sellers on the platform (to target buy-
ers and set prices). The platform can, for example, offer data management policies
to consumers which help consumers make informed purchases and which also in-
centivize firms to set prices that maintain high consumer surplus. Consumers are
willing to pay for such policies, and this can be a source of revenue for the plat-
form. At the same time the consumers have their own private information about
willingness to pay. The value of any data-management policy will be different
for consumers with different private beliefs and so the platform faces screening
frictions similar to those of the test-design firm. Data management policies are
effective information design policies and these screening frictions are also disci-
plined by similar constraints.

In our third application, we look at the design of credit rating schemes in a loan
market. The rating agency evaluates the riskiness of an investment project. In
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the presence of a risk-free outside option, less risky borrowers might forgo invest-
ing when facing high enough interest rates. Thus, credit ratings affect whether
the borrower seeks to invest in the project or exercise her outside option. Credit
ratings also inform the lender of the borrower’s risk profile and can be used to
increase the borrower’s surplus from the loan. Borrowers are willing to pay for
credit ratings, and the rating agency can design them to maximize its revenue.
Like the previous examples, the rating agency faces screening frictions as the bor-
rower’s private information about the riskiness of the project affects her willing-
ness to pay for the credit rating scheme.

These three applications are representative of the larger class of problems in-
volving information acquisition by a privately informed sender from a profit-
maximizing monopolistic intermediary and information disclosure to influence
the receiver’s decisions. The intermediary can design a policy that enhances the
information of the sender while at the same time selectively disclosing informa-
tion to the receiver to influence her ex post action. We combine tools of mechanism
design and information design to characterize incentive-compatible information
policies coupled with obedient decision rules for the receiver. We use these tools
to solve for optimal mechanisms in the three examples described above.

The design of an optimal mechanism is inherently a multi-dimensional screening
problem (for example, how finely to discriminate between students in the upper
tail versus students in the lower tail). We provide the necessary conditions for a
mechanism to be incentive compatible in terms of monotonicity of a functional
of the information policy (equivalent to convexity of the sender’s indirect util-
ity) prescribed by the mechanism. These conditions are also sufficient when the
sender’s payoff is linear in her type.

In our college admission application, the student’s utility is independent of her
ability, as she only values being admitted to the college regardless of her ability.
The school (receiver) chooses to admit or reject the student based on its expecta-
tion of the student’s ability. We use our characterization of incentive compatibil-
ity to enumerate the extreme points of the set of incentive-compatible, obedient,
and individually rational information policies. We then use these extreme points
to give a qualitative description of the optimal mechanism. We characterize the
structure of the optimal mechanism under two conditions on the receiver’s prior,
F, about the student’s ability. Under the first condition, the optimal mechanism
provides more informative (harder) tests to higher ability students and leaves
rents only to the higher types. Whereas under the second condition, the optimal
mechanism spreads out the informativeness (difficulty) of the tests more evenly
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among different types of students and leaves rents to all unexcluded types.

In our other applications, the sender’s utility is no longer linear in her type, as
the sender might prefer to exercise her outside option over accepting the action
recommended by the mechanism to the receiver during the ex-post interaction of
the sender and the receiver. For example, a consumer who learns that the prod-
uct’s value is low prefers not buying the item at a high enough price. Similarly, a
borrower with low risk tolerance prefers her safe option over borrowing at a high
interest rate. In both these examples, we restore the linearity of the sender’s pay-
off in her type by introducing an additional set of constraints to the mechanism
design problem. These constraints enforce the sender’s participation by ruling
out the sender exercising her outside option in the ex-post interaction with the
receiver. Introducing these additional constraints allows us to use our characteri-
zation of incentive compatibility.

Unlike our college admission application, in the other two applications, the re-
ceiver’s action depends on the whole distribution of the sender’s type (receiver’s
second-order beliefs), which presents additional challenges in dealing with obedi-
ence constraints. We introduce a new family of iso-elastic distributions, such that
any obedient information policy satisfying the sender’s participation constraint
can be transformed via information disclosure into a distribution in this family.
We then relax the problem by replacing the obedience constraints with two nec-
essary conditions for the receiver’s second-order beliefs to be a mean-preserving
contraction of some distribution in the iso-elastic family.

We solve for the optimal mechanism of the relaxed problem by first fixing the
slope of the sender’s indirect utility and deriving the optimal information policy
corresponding to that slope. Then we optimize over the slope to recover the op-
timal mechanism for the relaxed problem. Our approach is valuable as it reduces
the difficulty of calculating an optimal mechanism to verifying a single crossing
condition between the second-order beliefs of the receiver resulting from the re-
laxed optimal mechanism and a distribution in the iso-elastic family. We demon-
strate this by verifying the said single crossing when the receiver has a uniform
prior.

2 Model

Setup A sender has attribute θ ∈ {0, 1}, unknown to all. The sender is privately
but imperfectly informed of θ as represented by her prior belief µ. Only the sender

4



knows her prior µ, and we will refer to µ as the type of the sender.

There is a receiver who is initially uninformed about the sender’s attribute θ and
her type µ, knowing only that the latter is distributed according to a prior distri-
bution function F which is continuous and has density f .

An intermediary will design an information policy which will generate new in-
formation about θ. The intermediary can reveal some of this information to the
sender, allowing the sender to update her belief to a posterior ν. The intermediary
can also reveal information to the receiver. This will allow the receiver to form a
second-order belief, i.e. an element of ∆(Θ × ∆Θ), about both the attribute θ and
the posterior belief ν of the sender.

After observing the information provided by the intermediary, the receiver will
take an action a ∈ A and obtain a payoff πR(a, β). The sender will earn payoff
πS(a, ν).

Examples In our first application the sender is a student and the receiver is a
college. The intermediary sells a test to the student which will reveal information
to the college to be used in admissions decision. Here θ is the student’s ability,
high (θ = 1) or low (θ = 0). The college chooses from the pair of actions A =
{admit, reject} and wants to admit students of high ability. Specifically the ex-
post payoff from admitting the student depends only on θ and is given by the
following matrix where p ∈ (0, 1).

θ = 0 θ = 1
admit −1 1−p

p
reject 0 0

Given a belief β the college makes its admissions decision to maximize its ex-
pected payoff. In particular the student is admitted if and only if the college
beleives with at least probability p that the student has high ability. The student
earns a payoff of 1 from being admitted and 0 from being rejected, independent
of θ.

To avoid trivialities we assume EFθ < p so that some information is necessary to
induce the college to admit the student.

Our second application is to digital market platforms. Here the sender is a buyer
whose willingness to pay for a product is θ. The receiver is the seller of the prod-
uct; he offers a price p which the buyer will either accept or reject. Rejection leads
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to a payoff of zero for both parties and acceptance leads to payoff θ − p for the
buyer and p for the seller. Thus, when the buyer has posterior ν, she will accept
any price p ≤ ν and her total payoff will be max{ν − p, 0}. Given belief β, the
seller’s payoff from offering price p is given by

p · Prob(ν ≥ p).

Note that the seller’s payoff depends on his second-order belief: his belief about
the buyer’s belief.

In our final application, we consider a credit rating agency. The sender is a bor-
rower seeking to take out a loan to fund a project, the amount of the loan is nor-
malized to 1. The receiver is a lender who offers to fund the project at an interest
rate r. In state θ, the distribution of returns from funding the project is Gθ. Where
G1 is a mean preserving spread of G0. The expected return of the projects in either
state is R > 1, but the riskiness of the project is increasing in θ. The borrower
chooses between exercising an outside option R0 < 1 or borrowing at the interest
rate r with limited liability. When the realized return from the project is greater
than 1 + r, the payoff of the lender is 1 + r, and the payoff of the borrower is the
return minus 1 + r. If the realized return of the project is less than 1 + r, then
the borrower defaults. In this case, the lender recovers the realized returns of the
project and the borrower has zero payoff.

Given a rate r, the borrower’s payoff is increasing in his posterior ν (riskiness). Let
µ̂(r) be the posterior that makes the borrower indifferent between borrowing at
rate r and exercising her outside option. Thus, a borrower with posterior ν accepts
a loan at rate r whenever ν ≥ µ̂(r) and has a total payoff

Eν

[ ∫
max{R − (1 + r), 0}dGθ(R)

]
Given belief β, the lender’s payoff from offering a interest rate r is given by

Eβ

[ ∫
min{R − 1, r}dGθ(R)

∣∣∣∣ ν ≥ µ̂(r)
]
· Prob(ν ≥ µ̂(r))

Information Policies A test is defined by two non-empty sets of messages (“test
results”) MS and MR and for each θ a distribution ρθ ∈ ∆(MS ×MR). When
the sender submits to a test, the results are drawn from ρθ conditional on the
sender’s true attribute. The result in MS is privately disclosed to the sender and
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the result in MR is privately disclosed to the receiver. An information policy, or a
mechanism is defined by a non-empty set of messages MΣ and a rule that specifies
as a function of MΣ both a payment made by the receiver and a test. The receiver
selects a message from MΣ and the resulting test is carried out. Importantly, we
restrict payments to be ex ante, i.e. before the realization of the test.

In a direct mechanism MΣ = Θ, MR = A and MS = ∆θ. The sender reports
her type µ ∈ Θ and in response the intermediary charges the sender the fee ϕ(µ),
uses ρθ(µ) to recommend an action a ∈ A to the receiver and privately informs
the sender of her posterior ν ∈ ∆θ. Thus, ρθ(µ) ∈ ∆(A × ∆θ). When the interme-
diary uses a direct mechanism and the realized recommendation is a, the receiver
formulates the conditional belief β(· | a) ∈ ∆(θ × ∆θ).

A direct mechanism is obedient if the recommended action is always the one that
maximizes the receiver’s payoff conditional on hearing the recommendation, i.e.
with probability 1

a ∈ argmaxAπR(·, β(· | a)).

Let ν̃(µ) = µ marg∆θ ρ1(µ) + (1 − µ)marg∆θ ρ0(µ) be the total probability distri-
bution of the posterior induced for type µ. A direct mechanism is bayes-plausible if
for every µ,

Eν̃(µ) = µ.

Recall that Kamenica and Gentzkow (2011) bayes-plausibility implies that for a
sender with prior µ, the conditional probability of θ = 1 conditional on every
suggested posterior ν is ν itself. On the other hand, should µ report some other
type µ′ ̸= µ to the mechanism and receive the posterior ν suggested for µ′, she
would use that suggestion to update her true prior µ and thereby obtain a possibly
different posterior, call it δµ,µ′(ν). By continuity of Bayesian updating, δµ,µ′(ν) is
continuous in µ for any given µ′ and ν.

A direct mechanism yields gross utility for type µ equal to v(µ) = Eρ(µ)πS(a, ν).
We define the indirect utility function of a direct mechanism by

U(µ) = v(µ)− ϕ(µ)

When µ misreports µ′ ̸= µ she instead earns gross utility

v(µ′ | µ) = µEρ1(µ′)πS(a, δµ,µ′(ν)) + (1 − µ)Eρ0(µ′)πS(a, δµ,µ′(ν))

A direct mechanism is incentive compatible if for every µ, µ′

U(µ) ≥ v(µ′ | µ)− ϕ(µ′).
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A direct mechanism is individually rational if U(µ) ≥ 0 for all µ.

The goal of the intermediary is to maximize expected revenue. By the revela-
tion principle we can restrict attention to obedient, bayes-plausible and incentive-
compatible direct mechanisms (ρ, ϕ) designed to maximize

Π =
∫ 1

0
ϕ(µ)dF(µ)

3 Characterization of Incentive Compatibility

The gross deviation utility v(µ′ | µ) is non-linear which complicates the usual
envelope representation of incentive compatible mechanisms. However we can
make use of the following observation to obtain a condition that is necessary in
general and sufficient in some special cases.

Let (ρ, ϕ) be an incentive-compatible mechanism. Suppose for every µ′ there exist
numbers q0(µ

′) and q1(µ
′) such that for every µ

v(µ′ | µ) ≥ µq1(µ
′) + (1 − µ)q0(µ

′) (1)

with equality when µ = µ′. Then the linear function on the right-hand size is a
support function for the indirect utility function:

U(µ) ≥ v(µ′ | µ)− ϕ(µ′)

≥ µq1(µ
′) + (1 − µ)q0(µ

′)− ϕ(µ′)

= (µ − µ′)q1(µ
′) +

[
(1 − µ)− (1 − µ′)

]
q0(µ

′) + µ′q1(µ
′) + (1 − µ′)q0(µ

′)− ϕ(µ′)

= U(µ′) + (µ − µ′)
[
q1(µ

′)− q0(µ
′)
]

This implies that U(·) is convex and hence absolutely continuous. It is differen-
tiable at almost every µ with slope q1(µ)− q0(µ). The indirect utility of type µ can
be expressed as

U(µ) = U(0) +
∫ µ

0

[
q1(µ

′)− q0(µ
′)
]

dµ′

Turning things around, suppose that a mechanism (ρ, ϕ) yields a convex indirect
utility function U and the inequality in Equation 1 holds with equality for all µ. If
the integral representation above holds then the mechanism is incentive compati-
ble because by convexity.

U(µ) ≥ U(µ′) + (µ − µ′)
[
q1(µ

′)− q0(µ
′)
]
= v(µ′ | µ)− ϕ(µ′).
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4 College Admissions

In the collge admissions application a direct mechanism recommends admit or
reject to the college and the obedience constraint is

Prob(θ = 1 | α = admit) ≥ p

Let qθ(µ) = margA ρθ(µ) [admit] be the probability that a student with type µ and
ability θ is recommended for admission. Then

v(µ | µ′) = µq1(µ
′) + (1 − µ)q0(µ

′)

for all µ and µ′, and therefore the monotonicity condition, namely for all µ ≥ µ′

q1(µ)− q0(µ) ≥ q1(µ
′)− q0(µ

′)

together with the envelope formula are necessary and sufficient condition for in-
centive compatibility.

For any incentive compatible mechanism there must exist a type µ0 whose par-
ticipation constraint binds, i.e. U(µ0) = 0. If not, fees could be increased by a
constant for all types, raising revenue without altering incentive constraints.

Then we may write

U(µ) =

−
∫ µ0

µ [q1(µ
′)− q0(µ

′)] dµ′, if µ ≤ µ0∫ µ0

µ [q1(µ
′)− q0(µ

′)] dµ′, if µ ≥ µ0

Since U is convex and weakly positive, the slope must be non-positive below µ0

and non-negative above. In particular q1(µ) ≤ q0(µ) for all µ ≤ µ0.

We may express the intermediary’s expected revenue as expected gross utility
minus expected indirect utility.

Π =
∫ µ0

0

{
v(µ) +

∫ µ0

µ

[
q1(µ

′)− q0(µ
′)
]

dµ′
}

f (µ)dµ

+
∫ 1

µ0

{
v(µ)−

∫ µ0

µ

[
q1(µ

′)− q0(µ
′)
]

dµ′
}

f (µ)dµ
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We can see immediately that profit is increasing in q1(µ) for all µ ≤ µ0. More-
over, increasing q1(µ) adds slack to the obedience constraint and therefore the
constraint q1(µ) ≤ q0(µ) must bind and we have q1(µ) = q0(µ) for all µ ≤ µ0.

It follows that q1(µ) ≥ q0(µ) for all µ ∈ [0, 1] and in fact we may take µ0 = 0, that
is U(0) = 0.

When we change the order of integration and simplify we obtain the following
expression for expected virtual surplus

Π = E
[

q1(µ)

(
µ − 1 − F(µ)

f (µ)

)]
+ E

[
q0(µ)

(
1 − µ +

1 − F(µ)
f (µ)

)]
(2)

The problem reduces to maximizing expected virtual surplus subject to mono-
tonicity, obedience, and q1(µ) ≥ q0(µ).

Notice that the sum of the coefficients on q1(µ) and q0(µ) equals 1. If we ignore the
obedience constraint, it would be optimal therefore to set q1(µ) = q0(µ) = 1 for all
µ. This is the mechanism that admits the student with probability 1 (and extracts
all of the surplus), but this mechanism violates obedience because Eµ < p.

It follows that the obedience constraint is binding at the optimum and the prob-
lem becomes one of restoring obedience at minimum cost in terms of foregone
virtual surplus, and subject to monotonicity and q1(µ) ≥ q0(µ). One candidate
mechanism is a threshold mechanism in which q1(µ) = q0(µ) for all µ and these
admission probabilities jump from 0 to 1 at the interior point µ̃ defined by

E(µ | µ ≥ µ̃) = p

This mechanism is feasible because it is monotonic, and satisfies both obedience
and q1(µ) ≥ q0(µ). Moreover its indirect utility has a constant slope of zero so the
mechanism extracts all of the surplus it generates.

Nevertheless this mechanism is typically not optimal. Instead a mechanism which
selectively rejects some low-ability students (by setting q1(µ) > q0(µ) for some
types), can generate larger revenues despite yielding positive rents to the student.

Proposition 1. The optimal revenue is achieved by allocation of the following form, for
some values 0 ≤ µ0 ≤ µ ≤ 1.
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1. If 1−F(µ)
(1−µ) f (µ) is non-increasing then optimal allocation (q1, q0) is of the form

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ)

(1, 0) µ ∈ [µ, 1]

Where
∫ 1

µ0
µdF(µ) = p

1−p

∫ 1
µ (1 − µ)dF(µ).

2. If 1−F(µ)
(1−µ) f (µ) is non-decreasing then optimal allocation (q1, q0) is of the form

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1 − α, 0) µ ∈ [µ0, µ)

(1, α) µ ∈ [µ, 1]

Where (1 − α)
∫ µ

µ0
µdF(µ) +

∫ 1
µ µdF(µ) = α

p
1−p

∫ 1
µ (1 − µ)dF(µ).

The optimal mechanism obtained in item 1 allocates informative tests to the higher
types, and lower types are offered uninformative tests. Students with lower prior
expected ability take easier tests (less informative) and contribute to a greater
share of the intermediate’s revenue. Students with higher prior expected ability
take difficult tests (more informative) and earn greater information rent. In con-
trast, the optimal mechanism obtained in item 2 allocates informative tests more
evenly among different applicant types. In fact, there is a reversal in the allocation
of perfectly revealing tests. For item 2, types in the middle are admitted only if the
student is high-ability, and higher types are admitted even if they are low-ability.
Whereas in item 1, types in the middle are always admitted and higher types are
admitted only if they are high-ability. For a welfare perspective, all types that are
not excluded by the intermediary earn information rents in item 2, whereas the
intermediary extracts all surplus from types that are allocated uninformative tests
in item 1.

5 Digital Platform

Our next application is to digital marketplace platforms. A platform has access
to detailed data which enables it to precisely estimate a buyer’s willingness to
pay for products. The platform can provide this information to the buyer but
moreover to the seller. The former guides the buyer’s purchases while the latter
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disciplines the prices set by sellers. The platform sells access to the buyer and
by controlling the information available to sellers the platform also controls the
consumer surplus provided to buyers and thus increases the value of membership
on the platform.

Formally the buyer plays the role of the sender, with willingness to pay θ, and
private information µ. The seller is the receiver, setting a price p ∈ A = R. A sale
at price p yields θ − p for the buyer and p for the seller. The payoff to both from
no sale (including when the buyer is excluded from the platform) is zero.

A mechanism for the platform specifies whether the buyer will be admitted to
the platform and if so provides information to the buyer leading to the posterior
ν and recommends the price p to the seller. The seller infers the distribution of
posteriors ν for buyers on the platform and adopts the recommended price p if
and only if

p · Prob(ν ≥ p | p) ≥ p′ · Prob(ν ≥ p′ | p) (3)

The above system of inequalities constitutes the obedience constraint.

Participation Let qθ(µ) denote the probability that type µ joins the platform
when having willingness to pay θ, and let

q(µ) = µq1(µ) + (1 − µ)q0(µ)

be the total probability that µ joins the platform. The buyer earns non-negative
payoff only when joining the platform. The participation constraint therefore re-
quires that the expected payoff for every type µ conditional on joining the plat-
form and paying price p is non-negative:

µ · q1(µ) ≥ pq(µ) (4)

Incentive Compatibility The following observation enables us to use our gen-
eral representation of incentive compatibility. Since the buyer’s payoff is zero
when excluded from the platform this payoff is equivalent to the payoff from pur-
chasing the good at price equal to her willingness to pay θ. Thus we may without
loss represent any mechanism as one in which sale occurs with probability 1 at a
random price from the set {0, p, 1}.

In particular the expected price paid by type µ having willingness to pay θ is

p̄1(µ) = p · q1(µ) + 1 · (1 − q1(µ)) (5)
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for θ = 1 and
p̄0(µ) = p · q0(µ) + 0 · (1 − q0(µ)) (6)

for θ = 0. Since the total (both on and off the platform) expected value of the
buyer’s posterior is equal to her type µ, this yields gross payoff

v(µ) = E (ν − p) = µ − (1 − µ) p̄0(µ)− µ p̄1(µ)

where p̄θ(µ) is the expected value of the random price offered to type µ, condi-
tional on having true willingness to pay θ. The deviation payoff is

v(µ′ | µ) = µ′ − µ′ p̄1(µ)− (1 − µ′) p̄0(µ) = µ′(1 − p̄1(µ))− (1 − µ′) p̄0(µ)

and therefore the monotonicity condition requires that 1− p̄1(µ)+ p̄0(µ) is weakly
increasing. Or using the expressions in Equation 5 and Equation 6,

K(µ) = (1 − p)q1(µ) + pq0(µ) is weakly increasing in µ. (7)

This condition together with the envelope formula

U(µ) =
∫ µ

0

[
(1 − p)q1(µ

′) + pq0(µ
′)
]

dµ′ + U(0) (8)

are necessary and sufficient for incentive compatibility.1

Relaxed Obedience Constraint In the previous examples, the receiver’s condi-
tional beliefs about θ were sufficient to characterize the obedience constraint. Here
by contrast, obedience for the seller depends on the full conditional distribution
of the buyer’s interim beliefs. To facilitate the analysis of obedience we will make
use of results in a companion paper Chopra and Ely (2025) which in turn builds
on the results of Roesler and Szentes (2017) to characterize obedient value distri-
butions when the buyer has some initial private information.

1With this formulation we are empowering the platform to enforce sale when the seller accepts
the recommended price p. Thus, the mechanism needn’t guard against “double deviations” in
which a buyer of type µ misreports as type µ′ and then selectively rejects p for some posteriors.
Nevertheless, we show below that the optimal mechanism the platform never enforces undesirable
purchases on path. Moreover, in Section B.7 we discuss the issue of double deviations further and
show that allowing randomized prices deters all double deviations in any incentive-compatible
and individually-rational mechanism.
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Consider the following family of cumulative distribution functions parameterized
by a target price p and a mass x.

Hp
x (s) =


0 s < p
x s = p
1 − p

s 1 > s ≥ p
1−x

1 s = 1

Note that when x = 0 the distribution Hp
x is the unit-elastic demand studied by

Roesler and Szentes (2017) and makes the seller indifferent between all prices in
the interval [p, 1]. In other words Hp

0 satisfies the obedience constraint Equation 3
with equality for all p′ ≥ p. As shown by Roesler and Szentes (2017) this is the
way to maximize consumer surplus of a buyer with no initial private information.

In our setting the platform is a profit-maximizer screening a buyer with private
information. The seller is therefore willing to tradeoff consumer surplus (i.e. effi-
ciency) in exchange for rent extraction. Moreover given the buyer’s initial private
information there typically does not exist an information policy that can generate
an iso-elastic demand. Instead we will show that obedience can more generally
be satisfied by targeting information to the buyer in such a way as to generate a
distribution of posteriors of the form Hp

x for some x ≥ 0. The resulting value dis-
tribution makes the seller indifferent between all prices in {p} ∪ [p/(1 − x), 1].2

A distribution of buyer values can be transformed into one that satisfies obedience
if and only if it is a mean-preserving contraction of some Hp

x . We can therefore
replace the obedience constraint with the condition that marg∆θ β(· | p) to be a
mean-preserving contraction of Hp

x for some x. We will instead impose a relaxed
constraint consisting of two necessary conditions. The first condition is that the
mean valuation in marg∆θ β(· | p) equals the mean of Hp

x .

E marg∆θ β(· | p) = EHp
x . (9)

When this condition holds and additionally the CDF of marg∆θ β(· | p) crosses
Hp

x once and from below then the former is a mean-preserving contraction of the
latter. A necessary condition for this single crossing is

marg∆θ β(p | p) ≤ x, (10)

2As it turns out however we identify a condition on the ex ante distribution F under which the
optimal mechanism is indeed a unit-elastic demand with mass x = 0.
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that is the CDF of marg∆θ β(· | p) is below Hp
x at the point p.

Note for future reference that EHp
x is strictly decreasing in x.

Relaxed Problem When we express the platform’s profit as the difference be-
tween expected gross payoff and expected buyer utility, represent expected utility
by the envelope formula in with U(0) = 03 and then proceed with the standard
manipulations we obtain the following objective function for the platform.

Π =
∫ 1

0
(1 − p)

(
µ − 1 − F(µ)

f (µ)

)
q1(µ)dF(µ)

−
∫ 1

0
p
(

1 − µ +
1 − F(µ)

f (µ)

)
q0(µ)dF(µ) (11)

Our relaxed problem is to choose qθ(·) to maximize this profit function subject
to monotonicity (Equation 7), participation (Equation 4), and relaxed obedience
(Equation 9 and Equation 10).

Proposition 2. If 1−F(µ)
(1−µ) f (µ) is non-increasing, then for any p one of the following q(µ) =

(q1(µ), q0(µ)) is a solution to the relaxed problem

q(µ) =


(0, 0) if µ ≤ µ0(

p
1−p

1−µ0
µ0

, 1
)

if µ ∈ [µ0, µ′)

(1, 1) otherwise
or q(µ) =


(0, 0) if µ ≤ µ0
(1, 0) if µ ∈ [µ0, µ′)
(1, 1) otherwise

for some thresholds 0 ≤ µ0 ≤ µ′ ≤ 1

Notice that the likelihood ratio q1(µ)/q0(µ) is greater than or equal to 1 for all
types µ except those belonging to the second interval [µ0, µ′). In that second in-
terval the likelihood ratio is weakly increasing. It follows that there is at most one
type such that Equation 4 holds with equality. More precisely, the distribution of
values induced by the relaxed solution has no mass at p, i.e. x = 0. By Lemma 5
induced value distribution has the same mean as Hp

0 , the iso-elastic demand im-
plementing price p.

When we then ask whether the relaxed solution can be transformed into a fully
obedient mechanism and therefore a solution to the original problem, we need

3From Equation 8 we see that U(µ) ≥ U(0) for all µ and therefore if U(0) > 0 we could increase
payments by the constant U(0) without violating any constraints.
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Figure 1: For uniform distribution, the optimal price p∗(≈ 0.417) solves the re-
laxed problem and generates the distribution of buyer valuation, conditional on
being recommended price p∗, represented above in blue. This distribution crosses
Hp∗

0 once and from below and hence is a mean preserving contraction of Hp∗
0 .

only check whether this value distribution crosses Hp
0 once and from below. We

show in the appendix (Section B.6) that this is true in particular for the uniform
distribution on [0, 1]. The structure of the optimal mechanism for this case is rep-
resented in Figure 1.

Theorem 1. If F is uniform on [0, 1], then the solution to the relaxed problem in Proposi-
tion 2 with revenue-maximizing price p∗ is also a solution to the original problem.

6 Credit Rating

In this section, we present an application of our framework to credit rating in
a loan market. Like our digital platform example (Section 5), the credit rating
agency can provide information to both the borrower and the lender. The rating
agency sells access to credit to the borrowers and informs the borrower about the
riskiness of the project. The rating agency also selectively discloses this informa-
tion to shape the lender’s belief about the risk profile of the borrower conditional
on being given access to credit. The rating agency can use its information policy
to increase the borrower’s surplus from the loan and thus increase the borrower’s
value from the credit rating.
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Here, the borrower is the sender with project return distribution Gθ and private
information µ. The lender plays the role of the receiver and sets an interest rate
r ∈ A ∈ R. A borrower with posterior ν that accepts a loan at rate r has a total
payoff

Eν

[ ∫
max{R − (1 + r), 0}dGθ(R)

]
In case of no lending (including when the rating agency excludes the borrower),
the payoff of the borrower is R0 ∈ (0, 1) and the payoff of the lender is 0. Recall,
µ̂(r) is the type of borrower that is indifferent between investing at rate r and
exercising her outside option.

Eµ̂(r)

[ ∫
max{R − (1 + r), 0}dGθ(R)

]
= R0

Thus, for belief β, the lender’s payoff from offering an interest rate r is given by

Eβ

[ ∫
min{R − 1, r}dGθ(R)

∣∣∣∣ ν ≥ µ̂(r)
]
· Prob(ν ≥ µ̂(r))

A mechanism for the rating agency specifies whether the borrower is given access
to credit. If the borrower is given access to credit, the mechanism provides infor-
mation to the borrower leading to a posterior ν and recommends an interest rate
r to the lender. The lender infers the distribution of posteriors ν of the borrower
and agrees to lend at the recommended rate r if

Eβ

[ ∫
min{R − 1, r}dGθ(R)

∣∣∣∣ ν ≥ µ̂(r)
]
· Prob(ν ≥ µ̂(r))

≥ Eβ

[ ∫
min{R − 1, r′}dGθ(R)

∣∣∣∣ ν ≥ µ̂(r′)
]
· Prob(ν ≥ µ̂(r′)) (12)

Let r̂(ν) be the interest rate that makes the borrower with posterior ν indifferent
between borrowing and exercising her outside option.

Eν

[ ∫
max{R − (1 + r̂(ν), 0}dGθ(R)

]
= R0

For ease of exposure, we restrict attention to the following θ contingent return
distributions

G0 = δR
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G1 =
R
R1

δR +

(
1 − R

R1

)
δ0

Where δR is the Dirac mass at point R.
Additionally, we require the following relationship to hold

0 < R0 < 1 < 1 + R0 < R < R1 < R
R

R − R0

The second inequality implies that the borrower can not fund the project with her
safe option. The fourth inequality states that the total expected return from in-
vesting in the project is greater than the borrower’s outside option. Note that r̂(µ)
is increasing thus any rate r < r̂(0) violates obedience Equation 12. In particu-
lar, for any incentive compatible and obedient direct mechanism, there is a payoff
equivalent mechanism which recommends a rate r ∈ [r̂(0), r̂(1)]. The inequal-
ity R1 < R R

R−R0
implies that 1 + r̂(1) ≤ R, thus we can rewrite the payoff of a

borrower with posterior ν from borrowing at a rate r as following

R − (1 + r)− ν

(
1 − R

R1

)
(13)

The payoff of a borrower with posterior ν from having access to credit is

max
{

R0, R − (1 + r)− ν

(
1 − R

R1

)}
Participation Let qθ(µ) denote the probability that type µ gets access to credit
when having riskiness θ, and let

q(µ) = µq1(µ) + (1 − µ)q0(µ)

be the total probability that µ gets access to credit. As the borrower’s payoff is R0
when excluded from the mechanism, the borrower must earn a payoff greater than
her outside option R0 from following the mechanism’s recommendation. Given
any incentive compatible and obedient direct mechanism in which the borrower is
recommended a rate r but chooses to exercise her outside option instead, we can
construct a payoff equivalent mechanism in which the borrower always invests
in the project when given access to credit. Such a full participation mechanism
requires that the expected payoff for every type µ conditional on borrowing at a
rate r is at least R0:

µ · q1(µ) ≥ µ̂(r) · q(µ) (14)
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Incentive Compatibility The participation constraint in Equation 14 and the
borrower’s utility in Equation 13 allow us to use our characterization of incentive
compatibility as the borrower’s payoff is linear in her type along the equilibrium
path.

Recall that the payoff of borrower with riskiness θ conditional on borrowing at
rate r is given by Equation 13

uθ(r) = R − (1 + r) + θ

(
1 − R

R1

)
(1 + r)

This yields the following gross payoff

v(µ) = µu1(r)q1(µ) + (1 − µ)u0(r)q0(µ)

The deviation payoff is

v(µ′ | µ) = µu1(r)q1(µ
′) + (1 − µ)u0(r)q0(µ

′)

= v(µ) + µu1(r) · (q1(µ
′)− q1(µ)) + (1 − µ)u0(r) · (q0(µ

′)− q0(µ))

and therefore the monotonicity condition requires that u1(r)q1(µ)− u0(r)q0(µ) is
weakly increasing. Equivalently, we can express this as

K(µ) = u1(r) · q1(µ)− u0(r) · q0(µ) is weakly increasing in µ. (15)

This condition, together with the envelope formula

U(µ) =
∫ µ

0

[
u1(r) · q1(µ

′)− u0(r) · q0(µ
′)
]

dµ′ + U(0) (16)

are necessary and sufficient for incentive compatibility.4

Individual Rationality Note that the indirect utility U(µ) must be greater than
or equal to R0 for all types. The rating agency’s revenue is given by

Π(q) = Ev(µ)− EU(µ)

4Like before, we are empowering the rating agency to enforce the loan when the lender accepts
the recommended rate r.
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By inspection of the revenue and convexity of U we conclude there must be some
type µ ∈ [0, 1] for which U(µ) = 0. Moreover, this binding participation type is
µ = 0 as for any allocation q and for any rate r ∈ [r̂(0), r̂(1)] we have the following

µu1(r)q1(0) + (1 − µ)u0(r)q0(0) + R0 · (1 − µq1(0)− (1 − µ)q0(0))
≥ u0(r)q0(0) + R0 · (1 − q0(0))

The above follows from noting that u0(r) ≤ R0 ≤ u1(r) for all r ∈ [r̂(0), r̂(1)]. It
implies that any type µ′ ̸= 0 gets at least as much utility as µ = 0 from misreport-
ing as type 0 and getting q(0). If the smallest binding type is µ′ > 0, by convexity
of U we get that U(0) > U(µ′). This type µ′ has an incentive to misreport as type
0, and thus incentive compatibility rules out U(0) > R0.

In particular, for a revenue maximizing mechanism U(0) = R0.

Obedience The payoff of the seller, with belief β, from lending at rate r ∈ [r̂(0), r̂(1)]
is given by the following

Eβ

[
r − ν(1 + r)

(
1 − R

R1

) ∣∣∣∣ ν ≥ µ̂(r)
]
· Prob(ν ≥ µ̂(r))

A central role in the study of obedience constraints (Equation 12) is played by
the distribution of risk profiles that are iso-elastic on their support. These are
distributions of risk profile such that the lender is indifferent between all rates r′

for which µ̂(r′) is in the distribution’s support. For a given r, a distribution in this
class can be characterized by a mass point of size x ∈ [0, 1] at µ = µ̂(r) and a
corresponding target mean m(x). This target mean m(x) is decreasing in x with
m(1) = µ̂(r) = EHr

1 and m(0) = EHr
0. Where Hr

0 is given by the following

Hr
0(ν) =


0 ν ≤ µ̂(r)
1 − J(ν)

J(µ̂(r)) µ̂(r) < ν < 1

1 ν = 1

For J(ν) = 1+ g(ν)
∫ 1

ν
I(µ′)
I(ν) dµ′, I(µ) = exp

(
−
∫ 1

µ g(µ′)dµ′
)

and g(µ) = R−R0
R−R0−1

1− R
R1

1−µ
(

1− R
R1

) .

In particular, ψ(µ) =
∫ 1

µ (µ − ν)dHr
0(ν) is the solution to the following ordinary
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differential equation with initial condition d
dµ ψ(µ)

∣∣∣∣
µ=µ̂(r)

= 1

d
dµ

ψ(µ) + g(µ)ψ(µ) = lim
µ′↑1

Hr
0(µ

′) (17)

Additionally, in Section C.1 we show that Hr
x takes the following form

Hr
x(ν) =


0 ν < µ̂(r)
x µ̂(r) ≤ ν ≤ µ̃(x)

x + (1 − x)Hr̂(µ̃(x))
0 (ν) µ̃(x) < ν < 1

1 ν = 1

Note that there is a bijection between the size of the mass point x at µ̂(r) and the
target mean m(x) = EHr

x. In particular we can identify a distribution Hp
x for each

target mean m ∈ [µ̂(r), EHr
0]. Similar to Section 5, a distribution of the borrower’s

risk profile can be transformed into one that satisfies Equation 12 and Equation 14
if and only if it is a mean preserving contraction of some Hr

x. (see Proposition 4 in
Section C.1).

We relax Equation 12 to the following conditions

E marg∆θ β(· | r) = m (18)

Where m ∈ [µ̂(r), EHr
0]. Corresponding to mean m, there is an iso-elastic risk

profile Hr
x.

When the condition Equation 18 holds, and additionally, the CDF of marg∆θ β(· |
r) crosses Hr

x once and from below, then the former is a mean-preserving contrac-
tion of the latter. A necessary condition for this single crossing is

marg∆θ β(µ̂(r) | r) ≤ x (19)

and the requirement that the support of marg∆θ β(· | r) is in [µ̂(r), 1] follows from
Equation 14.

Relaxed Problem When we express the rating agency’s profit as the difference
between expected gross payoff and expected buyer utility, represent expected util-
ity by the envelope formula with U(0) = R0 and then proceed with the standard
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manipulations, we obtain the following objective function for the rating agency.

Π =
∫ 1

0
u1(r)

(
µ − 1 − F(µ)

f (µ)

)
q1(µ)dF(µ)

+
∫ 1

0
u0(r)

(
1 − µ +

1 − F(µ)
f (µ)

)
q0(µ)dF(µ)− R0

∫ 1

0
q(µ)dF(µ) (20)

Our relaxed problem is to choose qθ(·) to maximize this profit function subject
to monotonicity (Equation 15), participation (Equation 14), and relaxed obedience
(Equation 18 and Equation 19) for some m ∈ [µ̂(r), EHr

0].

Proposition 3. If 1−F(µ)
(1−µ) f (µ) is non-increasing, then for any r one of the following q(µ) =

(q1(µ), q0(µ)) is a solution to the relaxed problem

q(µ) =


(0, 0) if µ ≤ µ0(
α−1

r (µ0), 1
)

if µ ∈ [µ0, µ1)
(1, 1) if µ ∈ [µ1, µ)
(1, 0) otherwise

or q(µ) =


(0, 0) if µ ≤ µ0(
α−1

r (µ0), 1
)

if µ ∈ [µ0, µ)(
α−1

r (µ0)− u1(r)
u0(r)

, 0
)

otherwise

for µ̂(r) < µ0 and αr(µ0) =
1−µ̂(r)

µ̂(r)
µ0

1−µ0
.

q(µ) =


(0, 0) if µ ≤ µ0
(1, αr(µ0)) if µ ∈ [µ0, µ)
(1, 0) otherwise

or q(µ) =


(0, 0) if µ ≤ µ0
(1, αr(µ0)) if µ ∈ [µ0, µ)(

1 − αr(µ0)
u1(r)
u0(r)

, 0
)

otherwise

for µ0 ≤ µ̂(r) and αr(µ0) =
1−µ̂(r)

µ̂(r)
µ0

1−µ0
.

7 Related Literature

Corrao (2023) and Lizzeri (1999) study variations of an information design prob-
lem with incentive constraints but in their model the sender is already perfectly
informed. The role of the intermediary is to turn the sender’s soft information into
information that is verifiable to the receiver. In Ali et al. (2020) the intermediary
is generating new information but the sender has no private information ex ante
and so there are no screening frictions. Bergemann et al. (2018) study a problem
like ours where the information designer produces new information for an ex ante
privately informed agent. However, in Bergemann et al. (2018) the sender herself
takes the action ex post, there is no third party/receiver.
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Three concurrent and independent papers are closest to ours. Celik and Strausz
(2025) and Weksler and Zik (2025) both study a buyer-seller interaction like our
digital platform and Mäkimattila et al. (2024) study a version of our college ad-
missions example. All three papers impose a restriction on the intermediary that
the test chosen by the sender must be revealed to the receiver. By contrast we
give the intermediary full flexibility in designing the information structure for the
sender and the receiver. This ability to pool is valuable to the intermediary and
shapes the optimal mechanism. As a benchmark Mäkimattila et al. (2024) do also
examine the fully flexible case and derive the optimal mechanism in a case similar
to our item 1.
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A College Admissions

A.1 Geometry of Monotone Tests

The slope of the indirect utility is given by K(µ) = q1(µ) − q0(µ). Substituting
this into Equation 2 gives us

Π = E [q1(µ)]− E
[

K(µ)
(

1 − µ +
1 − F(µ)

f (µ)

)]
The obedience constraint is given by

E [µq1(µ)] ≥
p

1 − p
E [(1 − µ)q0(µ)]

As we argued in the text the obedience constraint must bind at an optimum. We
can express the binding constraint in terms of the slope function K(µ) as follows.

E [(1 − µ)K(µ)] = E
[(

1 − µ

p

)
q1(µ)

]
Putting together,

Π = E
[

µ

p
q1(µ)

]
− E

[
K(µ)

1 − F(µ)
f (µ)

]
(21)

If K is such that there exists some incentive compatible and obedient test (q1, q0)
for which K(µ) = q1(µ)− q0(µ), the following holds

0 ≤ K(µ) ≤ q1(µ) ≤ 1 (22)

and

E [(1 − µ)K(µ)] ≥
∫ 1

0

(
1 − µ

p

)
q1(µ)dF(µ) (23)

We call a slope K feasible if it satisfies Equation 22 and Equation 23 for some test
allocation q1. Define the following class of threshold allocations

(qK
1 (µ), qK

0 (µ)) :=

{
(K(µ), 0) µ < µK

(1, 1 − K(µ)) µ ≥ µK

For some µK ∈ [0, 1].

Lemma 1. For given p and feasible K(µ), the optimal allocation is q1 = qK
1 for some µK.
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Proof. It is clear from Equation 21 and Equation 23 that the optimum requires
q1(µ) = 1 for all µ ≥ p.

Consider for contradiction that there is some interval of types [µ0, µ) such that
K(µ) < q1(µ) < 1. It’s sufficient to consider µ ≤ p. Pick δ > 0 such that µ − µ0 ≥
2δ. We can improve the revenue by increasing q1 on [µ − δ, µ) by some ε1 > 0 and
by reducing q1 on [µ0, µ0 + δ) by ε0 > 0 where

ε1 = ε0

∫ µ0+δ
µ0

(
1 − µ

p

)
dF(µ)∫ µ

µ−δ

(
1 − µ

p

)
dF(µ)

ensuring that Equation 23 is maintained.

The revenue from the new allocation is greater than the old allocation if the fol-
lowing holds: ∫ µ0+δ

µ0

(
1 − µ

p

)
dF(µ)∫ µ

µ−δ

(
1 − µ

p

)
dF(µ)

≥

∫ µ0+δ
µ0

µ
p dF(µ)∫ µ

µ−δ
µ
p dF(µ)

⇐⇒

∫ µ0+δ
µ0

dF(µ)∫ µ
µ−δ dF(µ)

≥

∫ µ0+δ
µ0

µdF(µ)∫ µ
µ−δ µdF(µ)

The last inequality follows from our choice of δ.

Now consider q1 such that there are intervals I1 < I2 where q1(µ) = K(µ) for
µ ∈ I2 and q1(µ) = 1 for µ ∈ I1. It suffices to consider sup(I2) ≤ p by the pre-
vious arguments. We construct an improvement similar to the above by slightly
increasing q1 on I2 and reducing q1 on I1 to preserve the inequality in Equation 23.
The revenue of this improvement is greater than the old allocation if the following
holds: ∫

I1
dF(µ)∫

I2
dF(µ)

≥
∫

I1
µdF(µ)∫

I2
µdF(µ)

This is implied by inf(I2)
sup(I1)

≥ 1.

By Lemma 1 we can, without loss, focus on allocations that have non-decreasing
admission probability q1. Let Λ be the set of all such allocations which are also
incentive-compatible and have indirect utility with U(0) = 0. When viewed as
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a subset of the topological vector space (TVS) L∞([0, 1] → R2), the set Λ is al-
gebraically compact and convex.5 Moreover, its extreme points are such that for
some 0 ≤ µ0 ≤ µ ≤ 1

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ)

(1, 0) µ ∈ [µ, 1]

The set of such allocations is ex(Λ).

Another consequence of Lemma 1 is that, fixing µK, the designer’s objective can
be represented as maximizing a linear functional, where the choice variable is
the slope of the indirect utility, a monotone function! Thus, the slope K for an
extreme test allocation is a non-decreasing single-step function. By virtue of a
linear objective and a single linear obedience constraint, an optimal allocation can
be represented as a convex combination of at most two elements of ex(Λ) (see
Dubins (1960)). Thus, the optimal revenue is achieved by a mechanism where the
slope of the indirect utility is a non-decreasing two-step function. In particular,
the optimal test can be found among the ones with the following structure

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ1)

(1, α) µ ∈ [µ1, µ)

(1, 0) µ ∈ [µ, 1]

or (q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1 − α, 0) µ ∈ [µ0, µ1)

(1, α) µ ∈ [µ1, µ)

(1, 0) µ ∈ [µ, 1]

The proposition then establishes sufficient conditions on the prior F under which
1) the optimal allocation is described by a single extreme point, 2) the optimal
allocation is described by convex combination of two extreme points.

A.2 Proof of Proposition 1

Proof of Proposition 1. First, we note that a test such that q0 = 0 is never optimal;
this can be seen as the obedience constraint is always slack for such tests.
To prove item 1, we show by contradiction that a convex combination of two dis-
tinct tests can be improved. By Lemma 1 we can restrict attention to tests where

5A set Λ in a TVS is algebraically compact if the intersection of the set Λ with a line is always
algebraically closed and bounded, see Barvinok (2025).
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q1(µ) = q0(µ) implies that either q1(µ) = 0 or q1(µ) = 1. First consider as a test
(q1, q0) such that there exists 0 ≤ µ0 ≤ µ1 < µ ≤ 1 and

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ1)

(1, α) µ ∈ [µ1, µ)

(1, 0) µ ∈ [µ, 1]

We will construct a more profitable test q′ = (q′1, q′0) such that q′1 = q1 for all µ and
q0 = q′0 on the complement of [µ1, µ). On [µ1, µ1 + ε) set q′0 = 1 for some small
ε > 0 and on [µ1 + ε, µ) set q′0 = (1 − δ)α for small enough δ > 0. Now we will
argue that whenever 1−F(µ)

(1−µ) f (µ) is decreasing there exist ε > 0 and δ > 0 such that
q′ is feasible and earns higher revenue. Revenue increases by

(1 − α)
∫ µ1+ε

µ1

[
1 − µ +

1 − F(µ)
f (µ)

]
dF(µ)− δα

∫ µ

µ1+ε

[
1 − µ +

1 − F(µ)
f (µ)

]
dF(µ)

and the slack in the obedience constraint increases by

−(1 − α)
∫ µ1+ε

µ1

(1 − µ)p
1 − p

dF(µ) + δα
∫ µ

µ1+ε

(1 − µ)p
1 − p

dF(µ)

For a fixed ε > 0 there exist a δ > 0 such that both are positive if and only if∫ µ1+ε
µ1

[1 − µ + 1−F(µ)
f (µ) ]dF(µ)∫ µ

µ1+ε[1 − µ + 1−F(µ)
f (µ) ]dF(µ)

>

∫ µ1+ε
µ1

(1−µ)p
1−p dF(µ)∫ µ

µ1+ε
(1−µ)p

1−p dF(µ)
=

∫ µ1+ε
µ1

(1 − µ)dF(µ)∫ µ
µ1+ε(1 − µ)dF(µ)

and this inequality holds if and only if∫ µ1+ε
µ1

1−F(µ)
f (µ) dF(µ)∫ µ

µ1+ε
1−F(µ)

f (µ) dF(µ)
>

∫ µ1+ε
µ1

(1 − µ)dF(µ)∫ µ
µ1+ε(1 − µ)dF(µ)

(24)

For ε = 0 both sides are zero. Now suppose 1−F(µ)
(1−µ) f (µ) is decreasing in µ. Then

1 − F(µ1)

(1 − µ1) f (µ1)
≥
∫ µ

µ1

1 − F(µ)
(1 − µ) f (µ)

dF(µ) ≥

∫ µ
µ1

1−F(µ)
f (µ) dF(µ)∫ µ

µ1
(1 − µ)dF(µ)
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or
1−F(µ1)

f (µ1)∫ µ
µ1

1−F(µ)
f (µ) dF(µ)

≥ 1 − µ1∫ µ
µ1
(1 − µ)dF(µ)

and the left-hand side is the derivative of the left-hand side in Equation 24 while
the right-hand side is the derivative of the right-hand side in Equation 24, both at
ε = 0. This guarantees that Equation 24 holds on a neighborhood of ε = 0.

Now consider some test (q1, q0) which has the following form

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1 − α, 0) µ ∈ [µ0, µ1)

(1, α) µ ∈ [µ1, µ)

(1, 0) µ ∈ [µ, 1)

If µ0 = µ1 and µ1 < µ then previous argument shows that (q1, q0) is not optimal.
When µ0 < µ1 and µ1 < µ, then we can use the same ideas to construct a profitable
deviation, let (q′1, q′0) such that q′1 = q1 for all µ and q0 = q′0 on ([µ0, µ)C. On
[µ0, µ0 + ε) set q′0 = 1 − α for some small ε > 0 and on [µ1, µ) set q′0 = (1 − δ)α

for small enough δ > 0. Now we will argue that whenever 1−F(µ)
(1−µ) f (µ) is decreasing

there exist ε > 0 and δ > 0 such that the proposed deviation is feasible and leads
to a higher revenue. The increase in revenue and obedience slack are

(1 − α)
∫ µ0+ε

µ0

[1 − µ +
1 − F(µ)

f (µ)
]dF(µ)− δα

∫ µ

µ1

[1 − µ +
1 − F(µ)

f (µ)
]dF(µ)

and

−(1 − α)
∫ µ0+ε

µ0

(1 − µ)p
1 − p

dF(µ) + δα
∫ µ

µ1

(1 − µ)p
1 − p

dF(µ),

respectively. For a fixed ε > 0 there exist a δ > 0 such that both are positive if and
only if ∫ µ0+ε

µ0

1−F(µ)
f (µ) dF(µ)∫ µ

µ1

1−F(µ)
f (µ) dF(µ)

>

∫ µ0+ε
µ0

1 − µ dF(µ)∫ µ
µ1

1 − µ dF(µ)

which can be shown by a similar derivation as above to be true for small enough
ε > 0. We have established item 1 that (q1, q0) ∈ ex(Λ).
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To prove item 2, consider some (q1, q0) ∈ ex(Λ) and 0 ≤ µ0 < µ < 1 such that

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ)

(1, 0) µ ∈ [µ, 1]

We will show that there exist tests (q′1, q′0) and (q′′1 , q′′0 ) such that a mixture of these
is feasible and more profitable than (q1(µ), q0(µ)). To this end for some ε > 0
define

(q′1(µ), q′0(µ)) :=


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ − ε)

(1, 0) µ ∈ [µ − ε, 1]

(q′′1 (µ), q′′0 (µ)) :=


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ + ε)

(1, 0) µ ∈ [µ + ε, 1]

Now define a ”Revenue” and an ”Obedience” function on [µ0, 1];

R(µ) :=
∫ µ

µ0

dF(µ̃) +
∫ 1

µ
[µ̃ − 1 − F(µ̃)

f (µ̃)
] dF(µ̃)

Q(µ) :=
∫ µ

µ0

µ̃ − p
1 − p

dF(µ̃) +
∫ 1

µ
µ̃ dF(µ̃)

Note that R and −Q are differentiable and increasing. Let

α′ := inf{α ∈ [0, 1]|αR(µ − ε) + (1 − α)R(µ + ε) = R(µ)}

α′′ := inf{α ∈ [0, 1]|αQ(µ − ε) + (1 − α)Q(µ + ε) = Q(µ)}
Also define the corresponding types µ′ := µ+(1− 2α′)ε and µ′′ := µ+(1− 2α′′)ε.
In particular, we get that

α′ =
R(µ + ε)− R(µ)

R(µ + ε)− R(µ − ε)
and α′′ =

Q(µ)− Q(µ + ε)

Q(µ − ε)− Q(µ + ε)

The proof follows by showing that µ′ < µ′′, for which it is sufficient to show
α′ > α′′.

R(µ + ε)− R(µ)
R(µ + ε)− R(µ − ε)

>
Q(µ)− Q(µ + ε)

Q(µ − ε)− Q(µ + ε)
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⇐⇒

∫ µ+ε
µ [1 − µ + 1−F(µ)

f (µ) ]dF(µ)∫ µ+ε
µ−ε [1 − µ + 1−F(µ)

f (µ) ]dF(µ)
>

∫ µ+ε
µ (1 − µ)dF(µ)∫ µ+ε
µ−ε (1 − µ)dF(µ)

⇐⇒

∫ µ+ε
µ

1−F(µ)
f (µ) dF(µ)∫ µ+ε

µ−ε
1−F(µ)

f (µ) dF(µ)
>

∫ µ+ε
µ (1 − µ)dF(µ)∫ µ+ε
µ−ε (1 − µ)dF(µ)

⇐⇒

∫ µ
µ−ε

1−F(µ)
f (µ) dF(µ)∫ µ+ε

µ
1−F(µ)

f (µ) dF(µ)
<

∫ µ
µ−ε(1 − µ)dF(µ)∫ µ+ε
µ (1 − µ)dF(µ)

Whenever 1−F(µ)
(1−µ) f (µ) is non-decreasing the required inequality holds as

∫ µ+ε
µ

1−F(µ)
f (µ) dF(µ)∫ µ+ε

µ (1 − µ)dF(µ)
≥ 1 − F(µ)

(1 − µ) f (µ)
≥

∫ µ
µ−ε(

1−F(µ)
f (µ) )dF(µ)∫ µ

µ−ε(1 − µ)dF(µ)

Recall that any test can be written as a convex combination of at most two extreme
points. The above argument shows that if 1−F(µ)

(1−µ) f (µ) is non-decreasing, then the
optimal solution is represented by a convex combination of extreme points for
which either µ = 1 or µ = µ0. Using Lemma 1, the optimal test can be expressed
in the following form:

(q1(µ), q0(µ)) =


(0, 0) µ ∈ [0, µ0)

(1 − α, 0) µ ∈ [µ0, µ)

(1, α) µ ∈ [µ, 1]
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B Digital Platform

B.1 Relaxed Problem

Recall that K(µ) = (1 − p)q1(µ) + pq0(µ) is the slope of the indirect utility. We
may substitute into the objective in Equation 11 to obtain

Π =
∫ 1

0
µ(1 − p)q1(µ)dF(µ)−

∫ 1

0
p (1 − µ) q0(µ)dF(µ)

−
∫ 1

0
K(µ)

(
1 − F(µ)

f (µ)

)
dF(µ)

For any incentive-compatible and obedient mechanism q there is a corresponding
monotone slope function K(µ) taking values in [0, 1] and a target platform mean m
defined by ∫ 1

0
µq1(µ)dF(µ) =

m
1 − m

∫ 1

0
(1 − µ)q0(µ)dF(µ)

or ∫ 1

0

[
1 − p − µ

(
1 − p

m

)]
q1(µ)dF(µ) =

∫ 1

0
(1 − µ)K(µ)dF(µ) (25)

Substituting again into the objective and re-arranging we arrive at:

Π =
∫ 1

0
µ
(

1 − p
m

)
q1(µ)dF(µ)−

∫ 1

0

1 − F(µ)
f (µ)

K(µ)dF(µ) (26)

We have organized the obective function in a way that isolates the gains from
increasing q1(µ) from the costs of increasing the slope K(µ). In the background
we can adjust q0(µ) to maintain a given slope K(µ) and target mean m provided
q1(µ) ∈ [0, 1] satisfies

K(µ)− p
1 − p

≤ q1(µ) ≤
K(µ)
1 − p

. (27)

The first inequality ensures q0(µ) ≥ 0 and the second ensures q0(µ) ≤ 1. We can
also express the participation constraint Equation 4 in terms of K(µ) as follows

q1(µ) ≥
(1 − µ)K(µ)

1 − p
. (28)

We will say that a slope function K(µ) is feasible with respect to a target mean m
if there exists an allocation q1(µ) which satisfies Equation 25, Equation 27, and
Equation 28.
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B.2 Optimal Allocation for Fixed K

We can approach the problem by first finding the optimal q1 for a given target
mean m and feasible K(µ), and then optimizing the latter.

Define the following class of bang-bang allocations.

qK
1 (µ) :=

max
{

(1−µ)K(µ)
1−p , K(µ)−p

1−p

}
µ < µK

min
{

1, K(µ)
1−p

}
µ ≥ µK

For some µK ∈ [0, 1].

Lemma 2. For given m and feasible K(µ), the optimal allocation is q1 = qK
1 for some µK.

Proof. Consider any q1 for which there is an interval of types, [µ0, µ] such that
max

{
(1−µ)K(µ)

1−p , K(µ)−p
1−p

}
< q1(µ) < min

{
1, K(µ)

1−p

}
. Pick δ > 0 such that µ − µ0 ≥

2δ. We can improve the revenue by increasing q1 on [µ − δ, µ) by some ε1 > 0 and
by reducing q1 on [µ0, µ0 + δ) by ε0 > 0 where

ε1 = ε0

∫ µ0+δ
µ0

(
1 − p − µ

(
1 − p

m
))

dF(µ)∫ µ
µ−δ

(
1 − p − µ

(
1 − p

m
))

dF(µ)

ensuring that the target mean, i.e. Equation 25 is maintained. This adjustment
doesn’t violate the constraint in Equation 10 as it weakly decreases the size of any
point mass at p without changing the target mean.

The revenue from the new allocation is greater than the old allocation if the fol-
lowing holds:∫ µ0+δ

µ0

(
1 − p − µ

(
1 − p

m
))

dF(µ)∫ µ
µ−δ

(
1 − p − µ

(
1 − p

m
))

dF(µ)
≥

∫ µ0+δ
µ0

µ
(
1 − p

m
)

dF(µ)∫ µ
µ−δ µ

(
1 − p

m
)

dF(µ)

⇐⇒

∫ µ0+δ
µ0

(1 − p) dF(µ)∫ µ
µ−δ (1 − p) dF(µ)

≥

∫ µ0+δ
µ0

µ
(
1 − p

m
)

dF(µ)∫ µ
µ−δ µ

(
1 − p

m
)

dF(µ)

⇐⇒

∫ µ0+δ
µ0

dF(µ)∫ µ
µ−δ dF(µ)

≥

∫ µ0+δ
µ0

µdF(µ)∫ µ
µ−δ µdF(µ)
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The last inequality follows from our choice of δ.

Now consider q1 such that there are intervals I1 < I2 where q1(µ) = max
{

(1−µ)K(µ)
1−p , K(µ)−p

1−p

}
for µ ∈ I2 and q1(µ) = min

{
1, K(µ)

1−p

}
for µ ∈ I1. We construct an improvement

similar to the above by slightly increasing q1 on I2 while reducing q1 on I1 to keep
the mean constraint binding. Finally, note that this improvement introduces more
slack to Equation 10 . The revenue of this improvement is greater than the old
allocation if the following holds:∫

I1
dF(µ)∫

I2
dF(µ)

≥
∫

I1
µdF(µ)∫

I2
µdF(µ)

This is implied by inf(I2)
sup(I1)

≥ 1.

B.3 Optimal Choice of K

Notice that the monotonicity of K(µ) implies that there exists µ0 such that (1−µ)K(µ)
1−p ≥

K(µ)−p
1−p for all µ ≤ µ0 and (1−µ)K(µ)

1−p < K(µ)−p
1−p for all µ > µ0. In particular the par-

ticipation constraint in Equation 28 binds only for types µ ≤ µ0 and all mass x
at the point p comes from these types. The next lemma states that x = 0 for a
solution to the relaxed problem.

Lemma 3. The solution to the relaxed problem has K(µ) = 0 for all µ < µ0.

Proof. Consider a feasible allocation with target mean m and mass size x. Sup-
pose there is a non-empty interval [µ, µ0) consiting of types µ for which q1(µ) =
(1−µ)K(µ)

1−p > 0. Then x > 0 and m ≤ EHp
0 . Consider a new allocation which re-

duces K(µ) slightly at all points in [µ, µ0) while keeping q1 unchanged. The new
allocation increases the mean slightly (by Equation 9) to say m′ > m and elim-
inates any mass point (Equation 4 will be slack). For m′ close enough to m the
new allocation is feasible for the relaxed problem with target mean m′ and mass
x = 0. That is, Equation 9 and Equation 10 are satisfied for m′ and x = 0 because
EHp

0 > EHp
x .

By inspection of the objective in Equation 26 this is an improvement. Therefore a
solution to the relaxed problem must have K(µ) = 0 for all µ < µ0.
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Lemma 2 and Lemma 3 imply that a solution to the relaxed problem can be de-
scribed by µ0 and two further thresholds µ0 ≤ µ1 ≤ µ such that

(q1(µ), q0(µ)) =



(0, 0) µ < µ0(
K(µ)−p

1−p , 1
)

µ ∈ [µ0, µ1)(
K(µ)
1−p , 0

)
µ ∈ [µ1, µ)(

1, 1
p (K(µ)− (1 − p))

)
µ > µ

(29)

Lemma 4. A solution to the relaxed problem has a threshold µ′ ≥ µ such that

1. K(µ) = 1 for all µ ≥ µ′.

2. q0(µ) is constant on [µ0, µ′) and equal to 0 or 1.

Proof. We first show that any candidate solution can be weakly improved by one
that has q0(µ) ∈ {0, 1} for all µ ∈ [µ, 1]. If the candidate allocation does not
already have that property then we construct a new allocation q′ such that on
q′(µ) = q(µ) for µ ∈ [µ, 1]C. On the interval [µ, µ + ε0) let q′0(µ) = q0(µ), on the
interval [1 − ε1, 1] let q′0(µ) = 1, and q′0(µ) = q0(µ) for µ ∈ [µ + ε0, 1 − ε1). Where∫ µ+ε0

µ
(1 − µ)(q0(µ)− q0(µ))dF(µ)−

∫ 1

1−ε1

(1 − µ)(1 − q0(µ))dF(µ) = 0

As long as µ+ ε0 ≤ 1− ε1, the allocation q′ is well-defined and has the same target
mean as q. Consider the difference in revenue between q and q′:∫ µ+ε0

µ

(
1 − µ +

1 − F(µ)
f (µ)

)
(q0(µ)− q0(µ))dF(µ)−

∫ 1

1−ε1

(
1 − µ +

1 − F(µ)
f (µ)

)
(1− q0(µ))dF(µ)

=
∫ µ+ε0

µ

1 − F(µ)
f (µ)

(q0(µ)− q0(µ))dF(µ)−
∫ 1

1−ε1

1 − F(µ)
f (µ)

(1 − q0(µ))dF(µ)

When 1−F(µ)
(1−µ) f (µ) is non-increasing the change in revenue is positive as

∫ 1

1−ε1

1 − F(µ)
f (µ)

(1 − q0(µ))dF(µ) ≤ 1 − F(1 − ε1)

ε1 f (1 − ε1)

∫ 1

1−ε1

(1 − µ)(1 − q0(µ))dF(µ)

=⇒
∫ 1

1−ε1

1 − F(µ)
f (µ)

(1− q0(µ))dF(µ) ≤ 1 − F(1 − ε1)

ε1 f (1 − ε1)

∫ µ+ε0

µ
(1−µ)(q0(µ)− q0(µ))dF(µ)
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=⇒
∫ 1

1−ε1

1 − F(µ)
f (µ)

(1 − q0(µ))dF(µ) ≤
∫ µ+ε0

µ

1 − F(µ)
f (µ)

(q0(µ)− q0(µ))dF(µ)

The first implication follows from the choice of ε0, ε1. Thus any candidate alloca-
tion can be weakly improved by one for which there exists µ′ ∈ [µ, 1] such that
q0(µ) = 0 on [µ, µ′) and q0(µ) = 1 on [µ′, 1]. Note that the latter implies item 1 in
the statement of the Lemma in view of Equation 29.

In particular, by Equation 29, the improved allocation has q0(µ) = 1 for µ ∈
[µ0, µ1) and q0(µ) = 0 for µ ∈ [µ1, µ′). Next we claim that any such allocation
for which µ1 is strictly between µ0 and µ′ can be improved by one which satisfies
item 2 in the statement of the Lemma. In other words, one for which µ1 equals
either µ0 or µ′.

Assume for contradiction that the q is such that µ0 < µ1 < µ′. We construct a new
allocation q′ such that on q′(µ) = q(µ) for µ ∈ [µ0, µ′)C. On the interval [µ0, µ1) we
require q′0(µ) = q0(µ)− ε0, on the interval [µ1, µ′) we require q′0(µ) = q0(µ) + ε1.
Where

ε1 = ε0

∫ µ1
µ0
(1 − µ)dF(µ)∫ µ′

µ1
(1 − µ)dF(µ)

For small enough ε0 > 0, the allocation q′ is feasible with the same target mean as
q. We argue that under the condition of the proposition, this q′ achieves a weakly
higher revenue. To see this, consider the difference in revenue between q and q′:

ε0

∫ µ1

µ0

[
1 − µ +

1 − F(µ)
f (µ)

]
dF(µ)− ε1

∫ µ′

µ1

[
1 − µ +

1 − F(µ)
f (µ)

]
dF(µ)

Similar to Proposition Proposition 1, when 1−F(µ)
(1−µ) f (µ) is non-increasing the change

in revenue is positive as∫ µ1
µ0

1−F(µ)
f (µ) dF(µ)∫ µ′

µ1

1−F(µ)
f (µ) dF(µ)

>

∫ µ1
µ0
(1 − µ)dF(µ)∫ µ′

µ1
(1 − µ)dF(µ)

.
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B.4 Proof of Proposition 2

Proof of Proposition 2. It follows from Lemma 3, Lemma 4 and Equation 29 that a
solution to the relaxed problem takes one of the following two forms.

(q1(µ), q0(µ)) =


(0, 0) µ < µ0(

K(µ)−p
1−p , 1

)
µ ∈ [µ0, µ′)

(1, 1) µ > µ′
(30)

or

(q1(µ), q0(µ)) =


(0, 0) µ < µ0(

K(µ)
1−p , 0

)
µ ∈ [µ0, µ)

(1, 1) µ > µ

(31)

We complete the proof of Proposition 2 by identifying the slope in the middle
regions. Consider the first case and let K(µ) be a feasible slope. By definition
of µ0 we have K(µ0) − p ≥ (1 − µ0)K(µ0) implying K(µ0) ≥ p

µ0
. Therefore by

monotonicity of K, for all µ ≥ µ0 we have 1 ≥ K(µ) ≥ p
µ0

. We will show in

fact that a solution to the relaxed problem in this case has K(µ) ∈
{

p
µ0

, 1
}

for all
µ ∈ [µ0, µ′).

If K(µ) fails this property then we construct a new allocation that is determined
by Equation 30 for slope function K̂, where K̂(µ) = K(µ) for all µ /∈ [µ0, µ′). Let
K̂(µ) = p

µ0
for µ ∈ [µ0, µ0 + ε0) and K̂(µ) = 1 for µ ∈ [µ′ − ε1, µ′) and K̂ = K

otherwise. Choose ε0, ε1 > 0 such that µ0 + ε0 < µ′ − ε1 and the following holds

∫ µ′

µ′−ε1

µ (1 − K(µ)) dF(µ)−
∫ µ0+ε0

µ0

µ

(
K(µ)− p

µ0

)
dF(µ) = 0 (32)

By construction the allocation corresponding to K̂ is feasible as it has the same
mean as the one corresponding to K, this follows from Equation 32 and Equa-
tion 25 and the fact that q1(µ) =

K(µ)
1−p + constant over [µ0, µ′) (by Equation 30). By

assumption and monotonicity, there must also be values of ε0, ε1 such that K̂ ̸= K.
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The change in revenue is given by

∫ µ′

µ′−ε1

[
µ(m − p)
(1 − p)m

− 1 − F(µ)
f (µ)

]
(1 − K(µ)) dF(µ)

−
∫ µ0+ε0

µ0

[
µ(m − p)
(1 − p)m

− 1 − F(µ)
f (µ)

] (
K(µ)− p

µ0

)
dF(µ)

which by Equation 32 equals

= −
∫ µ′

µ′−ε1

1 − F(µ)
f (µ)

(1 − K(µ)) dF(µ) +
∫ µ0+ε0

µ0

1 − F(µ)
f (µ)

(
K(µ)− p

µ0

)
dF(µ)

Note that 1−F(µ)
(1−µ) f (µ) is non increasing, implies that 1−F(µ)

f (µ) is non increasing, thus
the change in revenue is positive if

1 − F(µ0 + ε0)

µ0 + ε0

[∫ µ0+ε0

µ0

(
K(µ)− p

µ0

)
dF(µ)−

∫ µ′

µ′−ε1

(1 − K(µ))dF(µ)
]
≥ 0

The inequality follows from the fact that 1−F(µ0+ε0)
µ0+ε0

is positive and by Equation 32
which implies

∫ µ′

µ′−ε1

(1 − K(µ))dF(µ) ≤ µ0 + ε0

µ′ − ε1

∫ µ0+ε0

µ0

(
K(µ)− p

µ0

)
dF(µ).

We conclude that a solution to the relaxed problem in the first case has K(µ) ∈{
p

µ0
, 1
}

for all µ ∈ [µ0, µ′). We can now conclude the proof of the first case in
the Proposition. It suffices to note that K(µ) = 0 implies q1(µ) = q0(µ) = 0 and
K(µ) = 1 implies q1(µ) = q0(µ) = 1. Then for the interval µ ∈ [µ0, µ′) since
K(µ) = p

µ0
and q(µ) =

(
K(µ)−p

1−p , 1
)

( by Equation 30) we obtain q1(µ) =
p

1−p
1−µ0

µ0
.

The second case, Equation 31, is treated following similar lines. By definition of
µ, we have 0 ≤ K(µ) ≤ 1 − p for µ ∈ [µ0, µ). By arguments analogous to the first
case we can show that a solution to the relaxed problem has K(µ) ∈ {0, 1 − p}
for µ ∈ [µ0, µ). To conclude the proof note that for the interval µ ∈ [µ0, µ) since
K(µ) = 1 − p and q(µ) =

(
K(µ)
1−p , 0

)
( by Equation 31) we obtain q1(µ) = 1.
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B.5 Optimal Mean

Proposition 2 characterizes the structure of the optimal mechanism for the relaxed
problem. Using this structure, we can show that the optimal target mean for a
given price p is EHp

0 .

Lemma 5. If 1−F(µ)
(1−µ) f (µ) is non-increasing then the optimal mean in Equation 9 for a solu-

tion to the relaxed problem with price p is m = EHp
0 .

Proof. Consider for contradiction that q is of one of the forms identified in Propo-
sition 2 but the corresponding target mean m < EHp

0 .

Case I: Let q be of the first form

q(µ) =


(0, 0) if µ ≤ µ0(

p
1−p

1−µ0
µ0

, 1
)

if µ ∈ [µ0, µ′)

(1, 1) otherwise

If µ0 < µ′ then we can construct a profitable deviation by choosing δ∗, δ > 0 and
by perturbing the allocation to (0, 0) on [µ0, µ0 + δ∗) and to (1, 1) on [µ′ − δ, µ′).
We can choose δ, δ∗ such that the new mean of the allocation is m′ ≤ EHp

0 and the
following holds∫ µ0+δ∗

µ0

µ
p

1 − p
1 − µ0

µ0
dF(µ) =

∫ µ′

µ′−δ
µ

(
1 − p

1 − p
1 − µ0

µ0

)
dF(µ)

As 1−F(µ)
µ f (µ) is non-increasing, this perturbation reduces the information rent and

increases the gross surplus.

If µ0 = µ′ then we can create a profitable perturbation by changing the allocation
to (1, 0) on [µ′, µ′ + δ) for small enough δ > 0.

Case II: Let q be of the second form

q(µ) =


(0, 0) if µ ≤ µ0
(1, 0) if µ ∈ [µ0, µ′)
(1, 1) otherwise

If µ0 = µ′, we can repeat the previous argument.

If µ0 < µ′ then we can construct a profitable deviation by choosing δ > 0 and
by perturbing the allocation to (1, 0) on [µ′, µ′ + δ∗). This is feasible for a small
enough δ as m < EHp

0 ≤ 1 implies µ′ < 1.
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B.6 Uniform Prior– Theorem 1

So far, we have characterized the qualitative structure of the optimal relaxed mech-
anism under some distributional constraints. In this section, we demonstrate the
power of our characterization by deriving the optimal primal mechanism for a
uniform prior. Consider F ∼ Unif[0, 1], this satisfies all conditions of Proposi-
tion 2, thus the optimal solution to the relaxed problem can be expressed as one of
the mechanisms identified in the proposition. Moreover, by Lemma 5 it suffices to
consider Equation 9 where m = EHp

0 . First, we look at the mechanism of the form

(q1(µ), q0(µ)) =


(0, 0) µ < µ0

(1, 0) µ ∈ [µ0, µ)

(1, 1) µ > µ

The mean constraint binding with no point mass at p implies that the relaxed
problem can be written as

max
µ0,µ

∫ 1

µ0

(1 − p)(2µ − 1)dµ − 2p
∫ 1

µ
(1 − µ)dµ

s.t.
0 ≤ µ0 ≤ µ ≤ 1∫ 1

µ0

µdµ =
EHp

0

1 − EHp
0

∫ 1

µ
(1 − µ)dµ

The objective can be rewritten as∫ 1

µ0

(1 − p)(2µ − 1)dµ − 2p
1 − EHp

0

EHp
0

∫ 1

µ0

µdµ

Note that µ0 = µ∗(p) := 1−p

2
(

1− p
EHp

0

) is the pointwise maximize of the objective. Let

p1 := argmax
{

p ∈ [0, 1]
∣∣∣∣ µ∗(p) ≥ t(µ∗(p))

}
, where t(µ∗) = 1−

√
(1−EHp

0 )
EHp

0
(1 − (µ∗)2).

For p ≥ p1, the point-wise optimal mechanism is feasible for the relaxed problem.
Moreover, the revenue is given by∫ 1

µ∗(p)

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ
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The above is decreasing in p, the derivative of the revenue is∫ 1

µ∗(p)
1 − 2µ

p
1

(1 − ln(p))2 dµ

This is negative as 1−3 ln(p)−p(1−ln(p))
−2p ln(p)(1−ln(p))2 > 1 for all p ∈ [0, 1].

For p < p1, the point-wise optimal mechanism doesn’t satisfy the interim partici-
pation constraint. The interim participation fails for p < p1 as µ1 < µ∗(p). Note
that the revenue decreases if q1(µ) increases for µ < µ∗(p). Thus, if p < p1 then
the optimal solution to the relaxed problem, restricted to mechanisms above, in-
volves thresholds µ0 = µ. By the mean constraint, the threshold value µ0 is a root
of the following quadratic equation

(1 − µ)2 =
1 − EHp

0

EHp
0

(1 − µ2)

This has a single interior solution, µ0 = µ = 2EHp
0 − 1, the revenue is thus given

by ∫ 1

2EHp
0 −1

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ

The above is negative if p1 > p ≥ p0 := argmax
{

p ∈ [0, 1]
∣∣∣∣ 1+p

2 ≥ p(1 − ln p)
}

,

thus the optimal thresholds are such that is if p ∈ [p0, p1] then µ0 = µ = 2EHp
0 − 1

and if p < p0 then µ0 = 1. Thus, to find the optimal mechanism in the first class
of mechanisms from the Proposition 2, we will maximize the following objective
with respect to p ∈ [p0, p1].

R(p) :=
∫ 1

2EHp
0 −1

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ = 2 [1 − EHp

0 ] [2EHp
0 − (1 + p)]

This function is concave in the domain and achieves an interior maximum. Un-
fortunately, the first order condition is a transcendental equation, so we rely on
numerical methods to calculate the optimum. The optimal revenue for the re-
laxed problem among this class of mechanisms is ≃ 0.0646, which is achieved by
p ≃ 0.4364, and µ0 = µ ≃ 0.596.
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Now we will describe the optimal mechanism for the second class of mechanisms
identified in Proposition 2;

(q1(µ), q0(µ)) =


(0, 0) µ < µ0(

p(1−µ0)
(1−p)µ0

, 1
)

µ ∈ [µ0, µ)

(1, 1) µ > µ

We only need to optimize over these mechanisms for price p < p1, as for other
prices the mechanism discussed above maximizes the revenue point-wise. We
solve the following problem

max
µ0,µ

∫ µ

µ0

(1 − p)
p(1 − µ0)

(1 − p)µ0
(2µ − 1)dµ +

∫ 1

µ
(1 − p)(2µ − 1)dµ − 2p

∫ 1

µ0

(1 − µ)dµ

s.t.

p ≤ µ0 ≤ µ ≤ 1∫ µ

µ0

µ
p(1 − µ0)

(1 − p)µ0
dµ +

∫ 1

µ0

µdµ =
EHp

0

1 − EHp
0

∫ 1

µ0

(1 − µ)dµ

The objective can be rewritten as

∫ µ

µ0

p(1 − µ0)

(1 − p)µ0

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ+

∫ 1

µ

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ

From the obedience we can express µ = h(µ0) :=
√

µ2
0 +

(1−p)µ0(1−µ0)

(µ0−p)(1−EHp
0 )
(1 + µ0 − 2EHp

0 )

For feasibility we require p ≤ µ0 ≤ µ, thus feasibility can be restated as max{p, 2EHp
0 −

1} ≤ µ0. The optimization problem can be restated

∫ h(µ0)

µ0

p(1 − µ0)

(1 − p)µ0

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ+

∫ 1

h(µ0)

[
2µ

(
1 − p

EHp
0

)
− (1 − p)

]
dµ

s.t.

max{p, 2EHp
0 − 1} ≤ µ0 ≤ 1
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This is a well-defined two-variable unconstrained optimization on a compact set.
In particular, we can numerically derive the relevant features of the mechanism
at the optimum. The optimal revenue for the relaxed problem among this class
of mechanisms is ≃ 0.0651, which is achieved by p∗ ≃ 0.417, µ0 ≃ 0.578, and
µ ≃ 0.629. Thus optimal relaxed mechanism with revenue-maximizing price p∗ is
given by

(q1(µ), q0(µ)) =


(0, 0) µ < 0.578
(0.522, 1) µ ∈ [0.578, 0.629)
(1, 1) µ > 0.629

The CDF for the receiver’s second-order beliefs for the above mechanism is given
by

marg∆(θ) β(µ | p = 0.417) =



0 µ < 0.417

w−1
∫ µ

µ+0.522(1−µ)

0.578 (0.522s + (1 − s))ds µ ∈ [0.417, 0.47)

w−1
∫ 0.629

0.578 (0.522s + (1 − s))ds µ ∈ [0.47, 0.629)

[∫ 0.629
0.578 (0.522s+(1−s))ds+

∫ µ
0.629(s+(1−s))ds

]
w µ ≥ 0.629

Where w =
∫ 0.629

0.578 0.522sds +
∫ 1

0.629 ds +
∫ 0.629

0.578 (1 − s) ds. As the mechanism solves
the relaxed problem, marg∆(θ) β(· | p = 0.417) has the same expectation as H0.417

0 .
We claim that H0.417

0 ⪰mps marg∆(θ) β(· | p = 0.417), this follows from the fact that
the distributions have the same support and that marg∆(θ) β(· | p = 0.417) crosses
H0.417

0 exactly once from below.

B.7 Deterring Double Deviations

If the platform can leverage the risk-neutrality of the seller and enforce random
prices with expected value p, then a scheme to deter double deviations is feasible.
It works as follows. Consider any type µ which joins the platform with positive
probability in the optimal mechanism. Let ν be the expected posterior obtained
by µ conditional on joining the platform. We have that ν ≥ p. Now when any
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other type µ misreports as µ, they will obtain a random posterior ν̃(µ) with some
expectation Eν̃(µ). Let µ ≤ µ be the type such that the expected posterior that µ

would obtain from mis-reporting as µ equals p, i.e. Eν̃(µ) = p. The continuity
and monotonicity of Bayesian updating guarantees that µ exists and is unique.

When µ joins the platform require the firm to charge price equal to the realization
of ν̃(µ). Note that this price is in a one-to-one correspondence with the realized
posterior of type µ as well as the posterior that would be obtained if any other
type were to misreport µ. Note that this random price has expected value p so it
leaves all payoffs, revenue, and incentive constraints unchanged.

Now consider double deviations. Consider any type µ′ which misreports as µ
and must then decide whether to accept the offered price. By the monotonicity of
Bayesian updating if µ′ ≥ µ the realized price is below ν̃(µ′) with probability 1.
Therefore, types higher than µ find no double deviation profitable. On the other
hand if µ′ < µ then after misreporting as µ, the type µ′ finds every price realization
strictly below ν̃(µ′), again by the strict monotonicity of Bayesian updating. Such
a type therefore rejects every price offered and obtains a payoff from zero from
the mis-report. Since the participation constraint already requires that the payoff
from truth-telling is weakly greater than zero, these double deviations are never
profitable.

C Credit Rating

C.1 Obedience

The given interest rate r, the iso-elastic risk profile Hr
0 is such that Equation 12

with marg∆θ β(· | r) = Hr
0 hold with equality for all ν ≥ µ̂(r). In particular, we

have the following condition for all r′ ∈ [r, r̂(1)]

EHr
0

[
r′ − ν(1 + r′)

(
1 +

R
R1

) ∣∣∣∣ν ≥ µ̂(r′)
]
=

(
r̂(1)− (1 + r̂(1))

(
1 − R

R1

))
lim
µ′↑1

Hr
0(µ

′)

Equivalently

∫ 1

µ

(
r̂(µ)− ν(1 + r̂(µ))

(
1 − R

R1

))
dHr

0(ν) = (R − R0 − 1) lim
µ′↑1

Hr
0(µ

′) (33)
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Adding and subtracting
∫ 1

µ

(
r̂(µ)− µ(1 + r̂(µ))

(
1 − R

R1

))
dHr

0(ν) to the left-hand
side yields the following equality

∫ 1

µ
(µ− ν)(1+ r̂(µ))

(
1 − R

R1

)
dHr

0(ν)+
∫ 1

µ

(
r̂(µ)− µ(1 + r̂(µ))

(
1 − R

R1

))
dHr

0(ν)

=
(

R − R0 − 1
) (

1 − lim
µ′↑1

Hr
0(µ

′)

)
(34)

Equivalently, we have the following ordinary differential equation

(1+ r̂(µ))
(

1 − R
R1

) ∫ 1

µ
(µ− ν)dHr

0(ν)+

(
r̂(µ)− µ(1 + r̂(µ))

(
1 − R

R1

))
∂

∂µ

∫ 1

µ
(µ− ν)dHr

0(ν)

=
(

R − R0 − 1
) (

1 − lim
µ′↑1

Hr
0(µ

′)

)
Dividing both sides by r̂(µ) − µ(1 + r̂(µ))

(
1 − R

R1

)
and plugging in 1 + r̂(µ) =

R−R0

1−µ
(

1− R
R1

) we get that

r̂(µ)− µ(1 + r̂(µ))
(

1 − R
R1

)
= R − R0 − 1

and

g(µ) :=
(1 + r̂(µ))

(
1 − R

R1

)
r̂(µ)− µ(1 + r̂(µ))

(
1 − R

R1

) =
R − R0

R − R0 − 1

1 − R
R1

1 − µ
(

1 − R
R1

)
Thus we recover Equation 17

d
dµ

ψ(µ) + g(µ)ψ(µ) = 1 − lim
µ′↑1

Hr
0(µ

′)

Using the integration factor I(µ) = exp
(
−
∫ 1

µ g(µ′)dµ′
)

we get that

d
dµ

(ψ(µ)× I(µ)) = I(µ)(1 − lim
µ′↑1

Hr
0(µ

′))
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The solution to this differential equation is given by

ψ(µ) = −(1 − lim
µ′↑1

Hr
0(µ

′))×
∫ 1

µ

I(ν)
I(µ)

dν (35)

Differentiating and plugging in the initial condition d
dµ ψ(µ)

∣∣∣∣
µ=µ̂(r)

= 1 we get that

Hr
0(ν) =


0 ν ≤ µ̂(r)
1 − J(ν)

J(µ̂(r)) µ̂(r) < ν < 1

1 ν = 1

Where J(ν) = 1 + g(ν)
∫ 1

ν
I(µ′)
I(ν) dµ′.

To show that Hr
0(ν) is a well-defined cumulative distribution function, we need to

verify that it is non-decreasing in ν. By definition Hr
0(ν) = 1 − J(ν)

J(µ̂(r)) for µ̂(r) <

ν < 1. Differentiating Hr
0(ν) with respect to ν we get the following

∂

∂ν
Hr

0(ν) =
−1

J(µ̂(r))
d

dν
J(ν)

The above is positive as J(µ̂(r)) > 0 and as

d
dν

J(ν) =
(

d
dν

g(ν)
) ∫ 1

ν

I(µ′)

I(ν)
dµ′ − g2(ν)

∫ 1

ν

I(µ′)

I(ν)
dµ′ − g(ν)

=

(
d

dν
g(ν)− g2(ν)

) ∫ 1

ν

I(µ′)

I(ν)
dµ′ − g(ν)

=
R − R0

R − R0 − 1

(
1 − R

R1

)2
 1

1 − ν
(

1 − R
R1

)
2(

−1
R − R0 − 1

) ∫ 1

ν

I(µ′)

I(ν)
dµ′ − g(ν)

= −g2(ν)
1

R − R0

∫ 1

ν

I(µ′)

I(ν)
dµ′ − g(ν)

= −g(ν)
J(ν) + R − R0 − 1

R − R0
< 0

The last inequality holds as R − R0 − 1 > 0. From above, we get that J(ν) is
decreasing in ν and hence Hr

0 is non-decreasing.
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By Equation 35 the mean of Hr
0 is given by

EHr
0 = µ̂(r) + (1 − lim

µ′↑1
Hr

0(µ
′))×

∫ 1

µ̂(r)

I(ν)
I(µ̂(r))

dν

= µ̂(r) +
1

J(µ̂(r))

∫ 1

µ̂(r)

I(ν)
I(µ̂(r))

dν

=⇒ d
dr

EHr
0 =

[
1 +

d
dµ̂(r)

(
1

J(µ̂(r))

∫ 1

µ̂(r)

I(ν)
I(µ̂(r))

dν

)]
d
dr

µ̂(r)

=
∫ 1

µ̂(r)

I(ν)
I(µ̂(r))

dν × d
dµ̂(r)

1
J(µ̂(r))

× d
dr

µ̂(r)

As µ̂(r) is increasing in r and as J(µ) is decreasing in µ, we get that EHr
0 is increas-

ing in r.

In addition to Hr
0, we have a whole family of distributions Hr

x indexed by the size
of the mass point at µ̂(r), which are isoelastic on their support, and the lender
optimally sets the rate r.

Hr
x is given by the following

Hr
x(ν) =


0 ν < µ̂(r)
x µ̂(r) ≤ ν ≤ µ̃(x)

x + (1 − x)Hr̂(µ̃(x))
0 (ν) µ̃(x) < ν < 1

1 ν = 1

For every value of x there exists a type µ̃(x) ∈ [µ̂(r), 1] such that the support of
Hr

x is {µ̂(r)} ∪ [µ̃(x), 1] and Hr
x is iso elastic on its support.

Let xr = 1
r

(
R1 − R0 − (1 + r) R

R1

)
. Then µ̃(x) is the solution to the following

equality when x ≤ xr and µ̃(x) = 1 when x > xr

r− (1+ r)
(

xµ̂(r) + (1 − x)EHr̂(µ̃(x))
0

)(
1 − R

R1

)
= (1− x)(R1 −R0 − 1)

(
1 − lim

µ′↑1
Hr̂(µ̃(x))

0 (µ′)

)
(36)

We have shown that J(ν) is decreasing in ν. Thus, the left-hand side above is
decreasing in µ̃(x) as EHr′

0 increases in r′, and the right-hand side is increasing in
µ̃(x) as limµ′↑1 Hr′

0 (µ
′) = 1 − 1

J(µ̂(r′)) . This implies that µ̃(x) is well defined.
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Before we present the main result of this section, that any distribution satisfying
Equation 14 and Equation 12 is a mean-preserving contraction of an iso elastic
distribution identified above, we will show that any such distribution must have
a mean m ≤ EHr

0.

Lemma 6. Any distribution G that satisfies Equation 14 and Equation 12 is such that
EG ≤ EHr

0.

Proof. Assume for contradiction that G satisfies Equation 12, Equation 14 and has
a mean m > EHr

0. By Equation 12 we must have the following

(R − R0 − 1)(1 − lim
µ′↑1

G(µ′)) ≤ r − m(1 + r)
(

1 − R
R1

)
By assumption m > EHr

0 thus we get

(R − R0 − 1)(1 − lim
µ′↑1

G(µ′)) < r − (1 + r)
(

1 − R
R1

)
EHr

0

Combining the above with Equation 33 for Hr
0 we get that

lim
µ′↑1

G(µ′) > lim
µ′↑1

Hr
0(µ

′)

As EG > EHr
0 the CDF G can not be everywhere above Hr

0. By continuity of Hr
0

and right continuity of G we get that there exists some µ̂(r) < µ0 < 1 such that
limµ′↑µ0 G(µ′) ≤ Hr

0(µ0) ≤ G(µ0) and Hr
0(µ) ≤ G(µ) for all µ > µ0. Evaluating

the lender’s payoff from setting a rate r̂(µ0) against the distribution G we get

r̂(µ0)(1 − lim
µ′↑µ0

G(µ′))− (1 + r̂(µ0))

(
1 − R

R1

) ∫
[µ0,1]

νdG(ν)

≥

r̂(µ0)(1− lim
µ′↑µ0

G(µ′))− (1+ r̂(µ0))

(
1 − R

R1

) ∫
[µ0,1]

νdG(ν)− (R−R0 − 1)(Hr
0(µ0)−G(µ0))

As Hr
0 is (weakly) below G for all µ > µ0, we get that the above expression is

bounded below by the following

r̂(µ0)(1 − Hr
0(µ0))− (1 + r̂(µ0))

(
1 − R

R1

) ∫ 1

µ0

νdHr
0(ν)
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By Equation 33 the above equals

r − (1 + r)
(

1 − R
R1

)
EHr

0

Thus, if m > EHr
0, setting a rate r̂(µ0) yields greater payoff to the lender than

setting a rate r, hence contradicting Equation 12.

Proposition 4. Given r ∈ [r̂(0), r̂(1)]. If G satisfies Equation 12 and Equation 14 with
mean m ∈ [µ̂(r), EHr

0] then G is a mean preserving contraction of Hr
x for some x ∈ [0, 1].

Proof. Case I: The mean EG = m is such that

r − m(1 + r))
(

1 − R
R1

)
≥ (R − R0 − 1)

(
m − µ̂(r)
1 − µ̂(r)

)
A mean-preserving spread of G can be generated by type-by-type garbling all
types in (µ̂(r), 1) to posterior in {µ̂(r), 1}. By the above inequality, both Equa-
tion 12 and Equation 14 are satisfied by the resulting distribution.

Case II: The mean EG = m is such that

r − m(1 + r))
(

1 − R
R1

)
< (R − R0 − 1)

(
m − µ̂(r)
1 − µ̂(r)

)
By Equation 36 we get that µ̃(x) < 1 and EHr

x = m.

Consider µ ≥ µ̃(x) then by Equation 33 for Hr
0 and Equation 12 for G we get that

following

∫ 1

µ

(
r̂(µ)− ν(1 + r̂(µ))

(
1 − R

R1

))
dHr

0(ν) ≥
∫
[µ,1]

(
r̂(µ)− ν(1 + r̂(µ))

(
1 − R

R1

))
dG(ν)

The integral on the right-hand side accounts for G having a mass point at µ. For-
mally, it is the limit of integrals over the interval (µ − ε, 1] as ε tends to zero. By a
similar manipulation as before, we can express this inequality in terms of a differ-
ential equation

g(µ)
∫ 1

µ
(ν − µ)(dG(ν)− dHr

x(ν)) + DL

(∫ 1

µ
(ν − µ)(dG(ν)− dHr

x(ν))

)
≥ 0

49



Here DL is the left derivative which exists as
∫ 1

µ (ν−µ)(dG(ν)− dHr
x(ν)) =

∫ 1
0 max{ν−

µ, 0} (dG(ν)− dHr
x(ν)) is convex in µ. The left derivative is necessary to accom-

modate any mass point that G might have at µ. Using the integration factor I(µ)
we obtain the following

DL

(
I(µ)

∫ 1

µ
(ν − µ)(dG(ν)− dHr

x(ν))

)
≥ 0

As I(µ)
∫ 1

µ (ν − µ)(dG(ν)− dHr
x(ν)) is continous in µ and as the left derivative is

everywhere above 0 for µ ∈ [µ̃(x), 1], we get that I(µ)
∫ 1

µ (ν − µ)(dG(ν)− dHr
x(ν))

is increasing in µ. Plugging in µ = 1 yields us I(1)
∫ 1

1 (ν − µ)(dG(ν)− dHr
x(ν)) =

0. As I(µ) > 0 we get that∫ 1

µ
(ν − µ)(dG(ν)− dHr

x(ν)) ≤ 0

or equivalently for all µ ∈ [µ̃(x), 1]∫ 1

0
max{ν − µ, 0} dG(ν) ≤

∫ 1

0
max{ν − µ, 0} dHr

x(ν) (37)

Now consider µ ∈ [µ̂(r), Hr
x], by convexity of

∫ 1
0 max{ν − µ, 0} dG(ν) we obtain

that
∫ 1

0 max{ν − µ, 0} dG(ν)is bounded above by the following

µ̃(x)− µ

µ̃(x)− µ̂(r)

∫ 1

0
max{ν− µ̂(r), 0} dG(ν)+

µ − µ̂(r)
µ̃(x)− µ̂(r)

∫ 1

0
max{ν− µ̃(x), 0} dG(ν)

As EG = EHr
x and both G and Hr

x satisfy Equation 14 we get that∫ 1

0
max{ν − µ̂(r), 0} dG(ν) =

∫ 1

0
max{ν − µ̂(r), 0} dHr

x(ν)

Combining the above with Equation 37 we get that

µ̃(x)− µ

µ̃(x)− µ̂(r)

∫ 1

0
max{ν− µ̂(r), 0} dG(ν)+

µ − µ̂(r)
µ̃(x)− µ̂(r)

∫ 1

0
max{ν− µ̃(x), 0} dG(ν)

≤ µ̃(x)− µ

µ̃(x)− µ̂(r)

∫ 1

0
max{ν− µ̂(r), 0} Hr

x(ν)+
µ − µ̂(r)

µ̃(x)− µ̂(r)

∫ 1

0
max{ν− µ̃(x), 0} dHr

x(ν)
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By definition of Hr
x the expression

∫ 1
0 max{ν − µ, 0} dHr

x(ν) is linear in µ thus we
obtain that for all µ ∈ [µ̂(r), µ̃(x)] the following holds∫ 1

0
max{ν − µ, 0} dG(ν) ≤

∫ 1

0
max{ν − µ, 0} dHr

x(ν)

The above together with Equation 37 implies that G is a mean-preserving contrac-
tion of Hr

x.

C.1.1 Shape of Hr
x

Lemma 7. If R1 − R0 − 1 < 1 then Hr
0 is concave.

Proof. Differentiating Hr
0 twice with respect to ν gives us the following

∂2

∂2ν
Hr

0(ν) =
1

J(µ̂(r))
d

dν

(
g(ν)

(
1 +

J(ν)− 1
R − R0

))

=
1

J(µ̂(r))

(
d

dν
g(ν)

(
1 +

J(ν)− 1
R − R0

)
+ g(ν)

d
dν

J(ν)− 1
R − R0

)
=

1
J(µ̂(r))

(
d

dν
g(ν)

(
1 +

J(ν)− 1
R − R0

)
− g2(ν)

R − R0

(
1 +

J(ν)
R − R0

))
=

1
J(µ̂(r))

(
1 +

J(ν)
R − R0

)(
d

dν
g(ν)− g2(ν)

R − R0

)
− 1

J(µ̂(r))(R − R0)

d
dν

g(ν)

<
1

J(µ̂(r))

(
1 +

J(ν)
R − R0

)
g2(ν)

R − R0 − 1
R − R0

(
1 − 1

R − R0 − 1

)
< 0

The first strict inequality above follows as d
dν g(ν) > 0. The last inequality follows

as R − R0 > 1 > R − R0 − 1. Thus Hr
0 is concave and increasing on [µ̂(r), 1].

C.2 Relaxed Problem

Any distribution of risk marg∆θ β(· | r) which is a mean-preserving contraction of
Hr

x for some x ∈ [µ̂(r), 1] can be transformed (via information disclosure) into
a risk profile that satisfies Equation 12 and Equation 14. Similar to our plat-
form example, we obtain Equation 18 and Equation 19 as necessary conditions
for marg∆θ β(· | r) to be mean preserving contraction of Hr

x for some x ∈ [µ̂(r), 1]

E marg∆θ β(· | r) = m
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and
marg∆θ β(µ̂(r) | r) ≤ x

Where m = EHr
x ∈ [µ̂(r), EHr

0].

Recall that K(µ) = u1(r)q1(r)− u0(µ)q0(µ) is the slope of the indirect utility. We
may substitute into the objective in Equation 20 to obtain

Π =
∫ 1

0
µu1(r)q1(µ)dF(µ) +

∫ 1

0
(1 − µ)u0(r)q0(µ)dF(µ)− R0

∫ 1

0
q(µ)dF(µ)

−
∫ 1

0
K(µ)

(
1 − F(µ)

f (µ)

)
dF(µ)

=
∫ 1

0
µ (u1(r)− R0) q1(µ)dF(µ) +

∫ 1

0
(1 − µ) (u0(r)− R0) q0(µ)dF(µ)

−
∫ 1

0
K(µ)

(
1 − F(µ)

f (µ)

)
dF(µ)

For any incentive-compatible and obedient mechanism q, there is a corresponding
monotone slope function K(µ) taking values in [0, 1] and a target mean m defined
by ∫ 1

0
µq1(µ)dF(µ) =

m
1 − m

∫ 1

0
(1 − µ)q0(µ)dF(µ) (38)

or

∫ 1

0

[
(1 − µ)u1(r)− µ

1 − m
m

u0(r)
]

q1(µ)dF(µ) =
∫ 1

0
(1 − µ)K(µ)dF(µ)

Substituting Equation 38 into the objective and re-arranging we arrive at:

Π =
∫ 1

0
µ

(
u1(r)− R0 + (u0(r)− R0)

1 − m
m

)
q1(µ)dF(µ)−

∫ 1

0

1 − F(µ)
f (µ)

K(µ)dF(µ)

(39)

Like before, we have organized the objective function in a way that isolates the
gains from increasing q1(µ) from the costs of increasing the slope K(µ). In the
background we can adjust q0(µ) to maintain a given slope K(µ) and target mean
m provided q1(µ) ∈ [0, 1] satisfies

K(µ)
u1(r)

≤ q1(µ) ≤ min
{

1,
K(µ) + u0(r)

u1(r)

}
(40)
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The first inequality ensures q1(µ), q0(µ) ≥ 0 and the second ensures q1(µ), q0(µ) ≤
1. We can also express the participation constraint Equation 14 in terms of K(µ)
as following whenever u1(r)− αr(µ)u0(r) > 0

q1(µ) ≤
K(µ)

u1(r)− αr(µ)u0(r)
(41)

Where αr(µ) =
µ(1−µ̂(r))
(1−µ)µ̂(r) .

We will say that a slope function K(µ) is feasible with respect to a target mean m
if there exists an allocation q1(µ) which satisfies Equation 38, Equation 40, and
Equation 41.

C.3 Optimal Allocation for Fixed K

We can approach the problem by first finding the optimal q1 for a given target
mean m and feasible K(µ), and then optimizing the latter.

Note that K(µ)
u1(r)−αr(µ)u0(r)

crosses min
{

1, K(µ)+u0(r)
u1(r)

}
once and from above and at a

point µ0 for which u1(r)− αr(µ0)u0(r) > 0.

Moreover, on [0, µ0] we have K(µ)
u1(r)−αr(µ)u0(r)

≥ K(µ)
u1(r)

.

Define the following class of allocations for some µK ∈ [0, 1]

qK
1 (µ) :=



K(µ)
u1(r)

µ < µK

K(µ)
u1(r)−αr(µ)u0(r)

µ0 > µ ≥ µK

min
{

1, K(µ)+u0(r)
u1(r)

}
µ > µ ≥ µ0

K(µ)
u1(r)

µ ≥ µ

Where µ0 < u1(r)
u1(r)+ 1−m

m u0(r)
≤ µ.

Lemma 8. For given m ∈ [µ̂(r), EHr
0] and feasible K(µ), the optimal allocation is q1 =

qK
1 for some µK.
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Proof. Let m ∈ (µ̂(r), EHr
0] for r < r̂(1), the boundary case follow from setting

µK = 1 when m = 1 and setting µK = 0, µ0 = 1 when m = µ̂(r).

Consider any q1 for which there is an interval of types in [µ′, µ′′] ⊂ [0, µ0] such that
K(µ)
u1(r)

< q1(µ) <
K(µ)

u1(r)−αr(µ)u0(r)
. Pick δ > 0 such that µ′′ − µ′ ≥ 2δ. We can improve

the revenue by increasing q1 on [µ′′ − δ, µ′′) by some ε1 > 0 and by reducing q1 on
[µ′, µ′ + δ) by ε0 > 0 where

ε1 = ε0

∫ µ′+δ
µ′

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)∫ µ′′

µ′′−δ

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)

ensuring that the target mean, i.e. Equation 38 is maintained. This is possible as
(1 − µ)u1(r) − µ 1−m

m u0(r) is positive on [0, µ0]. We can choose ε0 small enough
such that the adjustment doesn’t violate the constraint in Equation 19 as it weakly
decreases the size of any point mass at µ̂(r) without changing the target mean.

The revenue from the new allocation is greater than the old allocation if the fol-
lowing holds:∫ µ′+δ

µ′

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)∫ µ′′

µ′′−δ

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)
≥

∫ µ′+δ
µ′ µ

(
u1(r) + u0(r)1−m

m − R0
m

)
dF(µ)∫ µ′′

µ′′−δ µ
(

u1(r) + u0(r)1−m
m − R0

m

)
dF(µ)

⇐⇒

∫ µ′+δ
µ′

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)∫ µ′′

µ′′−δ

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)
≥

∫ µ′+δ
µ′ µdF(µ)∫ µ′′

µ′′−δ µdF(µ)

⇐⇒

∫ µ′+δ
µ′ u1(r)dF(µ)∫ µ′′

µ′′−δ u1(r)dF(µ)
≥

∫ µ′+δ
µ′ µdF(µ)∫ µ′′

µ′′−δ µdF(µ)

⇐⇒

∫ µ′+δ
µ′ dF(µ)∫ µ′′

µ′′−δ dF(µ)
≥

∫ µ′+δ
µ′ µdF(µ)∫ µ′′

µ′′−δ µdF(µ)

The first implication follows as m ≥ µ̂(r) implies that u1(r) + u0(r)1−m
m − R0

m ≥
0. The second implication holds as µ ≤ µ0 < u1(r)

u1(r)+ 1−m
m u0(µ)

which implies that

(1 − µ)u1(r)− µ 1−m
m u0(r) > 0. The last inequality follows from our choice of δ.
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Now consider q1 such that there are intervals I1 < I2 ⊂ [0, µ0] where q1(µ) =
K(µ)

u1(r)−αr(µ)u0(r)
for µ ∈ I1 and q1(µ) = K(µ)

u1(r)
for µ ∈ I2. We construct an improve-

ment similar to the above by slightly increasing q1 on I2 while reducing q1 on I1 to
keep the mean constraint binding. Finally, note that this improvement introduces
more slack to Equation 19. The revenue of this improvement is greater than the
old allocation if the following holds:∫

I1
dF(µ)∫

I2
dF(µ)

≥
∫

I1
µdF(µ)∫

I2
µdF(µ)

This is implied by inf(I2)
sup(I1)

≥ 1.

We can repeat the above arguments to establish that q1 can not be such that K(µ)
u1(r)

<

q1(µ) < min
{

1, K(µ)+u0(r)
u1(r)

}
for µ0 ≤ µ ≤ u1(r)

u1(r)+ 1−m
m u0(µ)

. Moreover, there are no

intervals I1 < I2 ⊂
[

µ0, u1(r)
u1(r)+ 1−m

m u0(µ)

]
such that q1(µ) = min

{
1, K(µ)+u0(r)

u1(r)

}
for

µ ∈ I1 and q1(µ) =
K(µ)
u1(r)

for µ ∈ I2.

To complete the proof consider µ > u1(r)
u1(r)+ 1−m

m u0(µ)
. Assume for contradiction

that there is an interval of types in [µ′, µ′′] ⊂ [0, µ0] such that K(µ)
u1(r)

< q1(µ) <

min
{

1, K(µ)+u0(r)
u1(r)

}
. Pick δ > 0 such that µ′′ − µ′ ≥ 2δ. We can improve the rev-

enue by decreasing q1 on [µ′′ − δ, µ′′) by some ε1 > 0 and by increasing q1 on
[µ′, µ′ + δ) by ε0 > 0 where

ε1 = ε0

∫ µ′+δ
µ′

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)∫ µ′′

µ′′−δ

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)

Again, this adjustment can be made while maintaining Equation 38 and Equa-
tion 19.

The revenue from the new allocation is greater than the old allocation if the fol-
lowing holds:

−

∫ µ′+δ
µ′

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)∫ µ′′

µ′′−δ

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)
≥ −

∫ µ′+δ
µ′ µ

(
u1(r) + u0(r)1−m

m − R0
m

)
dF(µ)∫ µ′′

µ′′−δ µ
(

u1(r) + u0(r)1−m
m − R0

m

)
dF(µ)
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⇐⇒ −

∫ µ′+δ
µ′

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)∫ µ′′

µ′′−δ

(
(1 − µ)u1(r)− µ 1−m

m u0(r)
)

dF(µ)
≥ −

∫ µ′+δ
µ′ µdF(µ)∫ µ′′

µ′′−δ µdF(µ)

⇐⇒

∫ µ′+δ
µ′ u1(r)dF(µ)∫ µ′′

µ′′−δ u1(r)dF(µ)
≥

∫ µ′+δ
µ′ µdF(µ)∫ µ′′

µ′′−δ µdF(µ)

⇐⇒

∫ µ′+δ
µ′ dF(µ)∫ µ′′

µ′′−δ dF(µ)
≥

∫ µ′+δ
µ′ µdF(µ)∫ µ′′

µ′′−δ µdF(µ)

The second implication holds as µ ≥ u1(r)
u1(r)+ 1−m

m u0(µ)
which implies that (1−µ)u1(r)−

µ 1−m
m u0(r) < 0. The last inequality follows from our choice of δ.

Similarly, we can show that there are no intervals I1 < I2 ⊂
[

u1(r)
u1(r)+ 1−m

m u0(µ)
, 1
]

such that q1(µ) = min
{

1, K(µ)+u0(r)
u1(r)

}
for µ ∈ I2 and q1(µ) =

K(µ)
u1(r)

for µ ∈ I1.

C.4 Optimal Choice of K

Lemma 9. If 1−F(µ)
(1−µ) f (µ) non-increasing, then there is a solution to the relaxed problem,

qK, for which K(µ) = 0 on µ ≤ µK.

Proof. Consider r < r̂(1) and target mean m ∈ [µ̂(r), EHr
0]. In particular K(µ) ̸=

u1(r) for all µ.

Let µ̃ be the largest type for which either qK
1 (µ) ̸= 1 or qK

1 (µ) ̸= 0. As EHr
0 < 1 for

r < r̂(1) it must be that µ̃ > µK.

If qK
1 is such that K(µ) ̸= 0 on µ ∈ [0, µK) then m ∈ (µ̂(r), EHr

0]. Moreover, by
monotonicity of K it must be that µ∗ < µK. Where µ∗ is the largest type for which
K(µ) = 0.

The allocation can be perturbed on an interval [µ̃ − δ̃, µ̃) such that the new allo-
cation is (1, 0) on [µ̃ − δ̃, µ̃). Where δ̃ > 0 is arbitrarily small. For small enough δ̃
there exists δ, δ∗ > 0 such that µ∗ + δ∗ + δ < µK and the following holds∫ µ∗+δ∗

µ∗
µqK

1 (µ) dF(µ) =
∫ µ̃

µ̃−δ̃
µ(1 − qK

1 (µ)) dF(µ)
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and∫ µ∗+δ∗+δ

µ∗+δ∗
(1−µ)min

{
1, αr(µ

∗ + δ∗)
K(µ∗ + δ∗)

2u1(r)

}
dF(µ) =

∫ µ̃

µ̃−δ̃
(1−µ)qK

0 (µ) dF(µ)

Thus, the allocation can be further perturbed on [µ∗, µ∗ + δ + δ∗) by allocating
types in [µ∗, µ∗ + δ∗) to (0, 0) and types in [µ∗ + δ∗, µ∗ + δ + δ∗) to(

K(µ)
u1(r)

, min
{

1, αr(µ∗ + δ∗)K(µ∗+δ∗)
2u1(r)

})
.

By construction, this perturbation preserves Equation 38, Equation 19 and Equa-
tion 41. Moreover, the revenue of the resulting perturbed allocation is greater
than the original allocation qK

1 . The improvement in revenue follows from noting
that non-decreasing 1−F(µ)

µ f (µ) and 1−F(µ)
(1−µ) f (µ) implies the following inequalities respec-

tively∫ µ̃

µ̃−δ̃
µ

[
(u1(r)− R0)−

1
µ

1 − F(µ)
f (µ)

u1(µ)

]
qK

1 (µ) dF(µ)

≥
∫ µ∗+δ∗

µ∗
µ

[
(u1(r)− R0)−

1
µ

1 − F(µ)
f (µ)

u1(µ)

]
(1 − qK

1 (µ)) dF(µ)

=⇒
∫ µ̃

µ̃−δ̃

[
µ(u1(r)− R0)−

1 − F(µ)
f (µ)

u1(µ)

]
qK

1 (µ) dF(µ)

≥
∫ µ∗+δ∗

µ∗

[
µ(u1(r)− R0)−

1 − F(µ)
f (µ)

u1(µ)

]
(1 − qK

1 (µ)) dF(µ)

and∫ µ̃

µ̃−δ̃
(1 − µ)

[
(u1(r)− R0) +

1 − F(µ)
(1 − µ) f (µ)

u1(µ)

]
qK

0 (µ) dF(µ)

≤
∫ µ∗+δ∗+δ

µ∗+δ∗
(1−µ)

[
(u1(r)− R0) +

1 − F(µ)
(1 − µ) f (µ)

u1(µ)

]
min

{
1, αr(µ

∗ + δ∗)
K(µ∗ + δ∗)

2u1(r)

}
dF(µ)

=⇒
∫ µ̃

µ̃−δ̃

[
(1 − µ)(u1(r)− R0) +

1 − F(µ)
f (µ)

u1(µ)

]
qK

0 (µ) dF(µ)

≤
∫ µ∗+δ∗+δ

µ∗+δ∗
(1−µ)

[
(u1(r)− R0) +

1 − F(µ)
f (µ)

u1(µ)

]
min

{
1, αr(µ

∗ + δ∗)
K(µ∗ + δ∗)

2u1(r)

}
dF(µ)
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Lemma 10. If 1−F(µ)
(1−µ) f (µ) non-increasing, then there is a solution to the relaxed problem,

qK, for which K(µ) = 0 on µ ≤ µ0.

Proof. By Lemma 9 we can restrict attention to allocations with K(µ) = 0 on µ ≤
µK. Consider qK

1 such that K(µ) ̸= 0 on [µK, µ0] and µK < µ0. As µK < µ0 we
get that the qK corresponds to the relaxed problem with x > 0 and hence a target
mean m < EHr

0.

Let µ∗ be the largest type for which K(µ) = 0. By monotonicity of K we get that
µ∗ < µ0. For small enough δ∗ > 0 we can perturb the allocation on (µ∗, µ∗ + δ∗]
into the allocation (0, 0). As types in (µ∗, µ∗ + δ∗] are indifferent between parti-
cepating or not, the perturbation does not affect the gross surplus and reduces the
information rent by flattening the slope K on (µ∗, µ∗ + δ∗]. But the perturbation
might violate Equation 18 and Equation 19 as the increase in mean from the per-
turbation might be above EHr

x′ where x′ is the size of the point mass at µ̂(r) of the
perturbed allocation.

To restore these constraints, we further perturb the allocation by decreasing qK
0 (µ)

by ε > 0 on [µ∗ + δ∗, µ0). The size of the mass point at µ̂(r) jumps from x to 0
discontinuously as ε > 0. The mean from the two perturbations increases contin-
uously in δ∗ and ε. By combining the two perturbations Equation 18 and Equa-
tion 19 hold for m′ ∈ [m, EHr

0] and x = 0.

But the combination of these might violate the monotonicity of the slope. To ad-
dress this, consider highest type µ̃(ε) ≥ µ0 for which K(µ) ≥ K(µ0) + u0(r)ε. By
monotonicity of K, µ̃(ε) is increasing in ε and equal to µ0 at ε = 0. On [µ0, µ̃(ε)] the
allocation can be further perturbed by increasing qK

1 (µ) and/or decreasing qK
0 (µ)

where these changes increase the slope for type µ from K(µ) to K(µ0) + ε. Note
that this perturbation also increases the mean continuously in ε.

The combination of the three perturbations is feasible for the relaxed problem.
The first perturbation does not affect the gross surplus. The second and the third
perturbations increase the gross surplus. Moreover, ε and δ∗ can be chosen such
that the increase in the information rent from the second and third perturbation is
offset by the decrease in information rent from the first perturbation. In particular,
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the following inequality holds∫ µ∗+δ∗

µ∗

1 − F(µ)
f (µ)

K(µ)dF(µ)

≥
∫ µ0

µ∗+δ∗
u0(r)ε

1 − F(µ)
f (µ)

dF(µ) +
∫ µ̃(ε)

µ0

(K(µ0) + ε − K(µ))
1 − F(µ)

f (µ)
dF(µ)

The existence of this revenue-increasing and feasible perturbed allocation shows
that qK is not the solution to the relaxed problem, which establishes the lemma.

For given K let µ1 be the smallest type such that K(µ) ≥ u1(r)− u0(r). Note that
by definition µ0 ≤ µ1. Combining Lemma 9 and Lemma 10 gives that if 1−F(µ)

(1−µ) f (µ)
is non-increasing, then there is a solution of the relaxed problem with one of the
following form

qK
1 (µ) :=



0 µ < µ0

K(µ)+u0(r)
u1(r)

µ1 > µ ≥ µ0

1 µ > µ ≥ µ1

K(µ)
u1(r)

µ ≥ µ

Lemma 11. If 1−F(µ)
(1−µ) f (µ) non-increasing, then there is a solution to the relaxed problem,

qK, for which K is constant on [µ, 1] and is equal to limµ↑µ K(µ) or 1.

Proof. If K changes in value on [µ, 1), by monotonicity of K there exists µ̃ in [µ, 1)
and δ∗ > 0 such that K(µ + δ∗) < K(µ̃). In particular K(µ) ≤ K(µ + δ∗) < u1(r).

This implies that for small enough ε > 0 the allocation resulting from perturbing
qK on [µ, µ + δ∗) by +

(
ε, ε

u1(r)
u0(r)

)
for small enough ε > 0 preserves the slope K,

Equation 14 and Equation 19.

This perturbation, however, increases the mean, and the new allocation can thus
violate Equation 18. To restore the target mean, the allocation can be further per-
turbed by increasing qK

0 slightly for all types µ in [µ̃, 1). Let ε′ > 0 be the amount
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of this increase, and satisfies the following condition

ε′
∫ µ̃

µ
dF(µ) = ε

∫ µ+δ∗

µ
µ

1 − m
m

− (1 − µ)
u1(r)
u0(r)

dF(µ)

The right hand side is positive as µ ≥ u1(r)
u1(r)+ 1−m

m u0(µ)
. The value of ε′ > 0 is arbitrar-

ily small by choice of δ∗ and ε, and hence Equation 14 and Equation 19 hold. By
construction Equation 18 also holds. The first statement of the claim follows from
noting that the combination of the two perturbations increases the gross surplus
and decreases the rents.

To establish that K equals limµ↑µ K(µ) or 1, we can then use our usual argument of
reducing the allocation qK

1 on [µ0, µ0 + δ) and increasing qK
1 on an interval [1− δ̃, 1]

for some δ, δ̃ > 0 while preserving the mean constraint Equation 18. Like before,
we can show that as 1−F(µ)

µ f (µ) non-increasing, this perturbation is revenue improving
as it reduces the information rent.

Lemma 12. If 1−F(µ)
(1−µ) f (µ) non-increasing, then there is a solution to the relaxed problem,

qK, for which K is constant on [µ0, µ1) and is equal to α−1
r (µ0)u1(r)− u0(r).

Proof. From Lemma 9 and Lemma 10 it suffices to consider qK such that K(µ) = 0
for all types in [0, µ0) Let µ̃ be the smallest type for which qK

1 (µ) = 1. If K(µ)
is not constant and equal to α−1

r (µ0)u1(r) − u0(r) in [µ0, µ1) by Equation 14 we
have K(µ0)+u0(r)

u1(r)
> α−1

r (µ0). Thus there exist arbitrarily small δ∗, δ̃ > 0 such that

µ0 + δ∗ < µ̃ − δ̃ and∫ µ0+δ∗

µ0

µ

(
K(µ) + u0(r)

u1(r)
− α−1

r (µ0)

)
dF(µ) =

∫ µ̃

µ̃−δ̃
µ(1 − qK

1 (µ)) dF(µ)

The allocation can be perturbed by decreasing qK
1 (µ) to α−1

r (µ0) on [µ0, µ0 + δ∗]

and by increasing qK
1 (µ) to 1 on [µ̃− δ̃, µ̃). This preserves Equation 18, Equation 14

and Equation 19. The claim follows from noting that the perturbation weakly
increases revenue as∫ µ̃

µ̃−δ̃
µ

[
(u1(r)− R0)−

1
µ

1 − F(µ)
f (µ)

u1(µ)

] (
K(µ) + u0(r)

u1(r)
− α−1

r (µ0)

)
(µ) dF(µ)

≥
∫ µ∗+δ∗

µ∗
µ

[
(u1(r)− R0)−

1
µ

1 − F(µ)
f (µ)

u1(µ)

]
(1 − qK

1 (µ)) dF(µ)
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=⇒
∫ µ̃

µ̃−δ̃

[
µ(u1(r)− R0)−

1 − F(µ)
f (µ)

u1(µ)

] (
K(µ) + u0(r)

u1(r)
− α−1

r (µ0)

)
dF(µ)

≥
∫ µ∗+δ∗

µ∗

[
µ(u1(r)− R0)−

1 − F(µ)
f (µ)

u1(µ)

]
(1 − qK

1 (µ)) dF(µ)

Lemma 13. If 1−F(µ)
(1−µ) f (µ) non-increasing, then there is a solution to the relaxed problem,

qK, for which K equals either K(µ1) or K(µ) on [µ1, µ).

Proof. If K(µ) ∈ (K(µ1), K(µ)) on [µ1, µ] we can construct a profitable perturba-
tion by decreasing qK

0 (µ) by K(µ)−K(µ)
u0(r)

on [µ − δ̃, µ) and by increasing qK
0 (µ) by

K(µ)−K(µ1)
u0(r)

on [µ1, µ1 + δ∗). Where δ̃, δ∗ > 0 are such that µ1 + δ∗ < µ − δ̃ and
satisfy the following∫ µ1+δ∗

µ1

(1 − µ)
K(µ)− K(µ)

u0(r)
dF(µ) =

∫ µ̃

µ̃−δ̃
(1 − µ)

K(µ)− K(µ1)

u0(r)
dF(µ)

This perturbation preserves incentive compatibility and obedience and yields a
greater revenue as 1−F(µ)

(1−µ) f (µ) is non-increasing.

C.5 Proof of Proposition 3

Using Lemmas 7 to 12, we observe that to prove the proposition, it suffices to pin
down the value of K(µ) on [µ1, µ) and whether µ0 ≥ µ̂(r) or not.

If K changes values on [µ1, µ) then by monotonicity of K and Lemma 13 there
exists µ∗ ∈ (µ1, µ) such that K(µ) = K(µ1) < K(µ) for µ ∈ [µ1, µ∗).

If µ < 1 then it must be that K(µ) = u1(r) as otherwise we can construct a per-
turbation similar to Lemma 11 by perturbing qK on

[
µ, µ + δ̃

)
by +

(
ε, ε

u1(r)
u0(r)

)
.

For small enough ε > 0 this perturbation preserves the slope K, Equation 14 and
Equation 19. Like Lemma 11, this perturbation increases the mean, and the new
allocation can thus violate Equation 18. To restore the target mean, the allocation
can be further perturbed by increasing qK

0 slightly for all types µ in [µ∗, µ). Let
ε′ > 0 be the amount of this increase, and satisfies the following conditions

K(µ)− ε′u0(r) ≥ K(µ1)
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and

ε′
∫ µ

µ∗
(1 − µ)dF(µ) = ε

∫ µ+δ̃

µ
µ

1 − m
m

− (1 − µ)
u1(r)
u0(r)

dF(µ)

If µ = 1, then by our usual manipulation, a mean-preserving, revenue-improving,
and feasible perturbation can be constructed by increasing qK

0 slightly for all types
µ in [µ∗, µ∗ + δ̂) and slightly decreasing qK

0 on [1 − δ′′, 1]. Where δ̂, δ > 0 can be
arbitarily small.
Thus K(µ) = u1(r) whenever K changes value in the interval [µ1, µ)

If µ̂(r) ≤ µ0 < µ1 < µ < 1 then K(µ) = u1(r). Where K(µ) = u1(r) follows by
noting that if K(µ) < u1(r) then we can construct a mean-preserving perturbation
of the allocation by increasing qK

1 (µ) to 1 on [µ̃, 1] ⊂ [µ, 1] and by decreasing qK
1

to α−1
r (µ0)u1(r)− u0(r) on [µ1, µ1 + δ∗] for δ∗ > 0. This increases revenue by our

usual manipulation and by noting that 1−F(µ)
µ f (µ) is non-increasing.

Moreover, it must be that K(µ1) ∈ {u1(r)− u0(r), u1(r)}. To see this note that if
for contradiction K(µ1) ∈ (u1(r) − u0(r), u1(r)). Then we can increase qK

0 (µ) to
1 on [µ1, µ1 + δ) and decreasing qK

0 (µ) to 0 on [µ − δ′, µ). Where δ, δ′ > 0 and
µ1 + δ < µ − δ′. This adjustment can be made to preserve Equation 18 and is
revenue improving when 1−F(µ)

(1−µ) f (µ) is non-increasing.

Finally, consider µ1 = µ0. From the previous arguments we can deduce that if
K(µ) = u1(r) then K(µ) is constant on [µ1, µ) and is equal to u1(r) − u0(r) or
u1(r)− αr(µ0)u0(r). Moreover, if K(µ) < u1(r) then K(µ) is constant and equal to
u1(r)− αr(µ0)u0(r) on [µ1, 1].

C.6 Optimal Mean

Lemma 14. Fix some r ∈ [r̂(0), r̂(1)]. If 1−F(µ)
(1−µ) f (µ) is non-increasing, then there is a

solution to the relaxed problem which has a form given in Proposition 3 and is such that
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either Equation 18 holds with m = EHr
0 or the allocation has the following form

q(µ) =



(0, 0) µ < µ1(
u0(r)
u1(r)

, 1
)

µ1 > µ ≥ µ0

(1, 1) µ > µ ≥ µ1

(1, 0) µ ≥ µ

Where α−1
r (µ1) < 1 if µ0 = µ1.

Proof. Let q be an allocation with one of t forms from Proposition 3.

First consider the allocation such that µ < 1 and q1 < 1 for µ ≥ µ. If in this case
m < EHr

0, we can construct a profitabler deviation similar to Lemma 11 by increas-
ing the allocation q by +(ε, ε

u1(r)
u0(r)

for small ε > 0. This perturbation does not affect
the slope of the indirect utility and hence leaves the information rent unchanged.
The perturbation increases the mean of the allocation as µ ≥ u1(r)

u1(r)+ 1−m
m u0(r)

≥ µ̂(r)

and hence increases the gross surplus. For small enough ε, Equation 19 and Equa-
tion 14 hold for the perturbed allocation. Moreover, the mean m′ of the perturbed
allocation is in (m, EHr

0). Thus, the perturbed allocation is feasible for the relaxed
problem and yields a greater revenue, leading to a contradiction.

Now consider allocation such that µ0 < µ1, µ and α−1
r (µ0) >

u0(r)
u1(r)

. For such an al-
location the type µ0 contributes 0 to the gross surplus, moreover for small enough
δ > 0 the contribution of types in [µ0, µ0 + δ) contribute an arbitrarily small
amount to the gross surplus. When α−1

r (µ0) >
u0(r)
u1(r)

the indirect utility of types in
[µ0, µ1) is strictly greater than zero. In particular u1(r)q1(µ0)− u0(r)q0(µ0) > 0.
Thus we can choose δ∗ > δ > 0 small enough such that for all ν ∈ [µ0, µ0 + δ) the
following holds

ν(u1(r)− R0)q1(µ0) + (1 − ν)(u1(r)− R0)q0(µ0)

<

max
{

1 − F(µ0 + δ∗)

(1 − µ0 + δ∗) f (µ0 + δ∗)
,

1 − F(µ0 + δ∗)

(µ0 + δ∗) f (µ0 + δ∗)

}
[u1(r)q1(µ0)−u0(r)q0(µ0)]
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Thus, we can construct a revenue-improving and feasible perturbation by chang-
ing the allocation to (0, 0) on [µ0, µ0 + δ) and unchanged otherwise. The revenue
improves as the above inequality implies that the reduction in information rent
from the perturbation is greater than the reduction in the gross surplus. The per-
turbed allocation is feasible as it leaves Equation 19 and Equation 14 unchanged
and for a small enough δ > 0 the new mean is m′ ∈ (m, EHr

0).
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