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Abstract

This paper develops a theory of employer competition over hiring standards in labor markets
where employers rely on third-party certification to screen applicants. A revenue-maximizing
certifier sells tests to an applicant, who possesses imperfect private information about his abil-
ity and seeks to persuade employers to offer him employment. The certifier faces a joint screen-
ing and information design problem in designing a test allocation. The distortions from screen-
ing reduce the overall informativeness of the test allocation, steering the applicant supply to-
wards less selective employers. This incentivizes the more selective employers to lower their
standards, intensifying employer competition.
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1 Introduction

Labor markets are subject to information asymmetries as applicants generally know more about
their skills than potential employers. This asymmetry can lead to market failure if the applicant
cannot credibly signal his private information and if the expected ability of the applicant is low,
as in Akerlof (1970). An institutional response to market failure is third-party certification. The
certifier allows the informed applicant to signal information to uninformed employers (decision

makers). The certifier sells tests to the applicant, whose outcome may depend on the applicant’s
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underlying ability. The test outcome informs the employers about the applicant’s ability, alleviat-
ing some of the asymmetry.

Physicians, financial advisers, teachers, lawyers, and other professionals are required to take
standardized tests. Some other examples of such tests include online skill certification through
labor market platforms like Freelancer.com and talent assessment firms like ExpertRating. Em-
ployers often screen applicants through an established minimum hiring standard.! These range
from pass/fail requirements, such as the Uniform Bar Exam for prospective lawyers, to raw score
requirements, as with the USMLE (United States Medical Licensing Examination) for hospital res-
idency programs. In entry-level professions, where wages are standardized, employers compete
in their selectivity to attract applicants. More sought-after employers can aggressively screen ap-
plicants by having higher hiring standards.

The institutions responsible for administering these tests face an incentive problem in allocat-
ing tests to privately informed applicants. Rent-extraction by the certifier can lead to distortions in
test allocation, which feeds back into the employers” decisions. To parse the effect of the certifier’s
rent-extracting motive on the test allocation and on the subsequent employer-applicant interac-
tion, I abstract away from institutional details and consider a revenue-maximizing certifier that
can flexibly design and price information through menu pricing of tests.?

In that respect, this paper connects two elements that are typically studied in isolation: the
market structure for allocating tests to the applicant and the downstream employer-applicant in-
teraction. This provides new theoretical insights about the connection between allocative effi-
ciency in the certifier-applicant market and the nature of competition between employers. In par-
ticular, the distortions from second-degree price discrimination by the certifier reduce the overall
informativeness of the test allocation.? This tends to increase the supply of applicants to less se-
lective employers, which incentivizes the more selective employers to lower their hiring standards.

Rent-extraction by the certifier coarsens the overall information conveyed by the test alloca-
tion to the employers, leading to a lower supply of high-credential applicants and consequently

hindering employers from aggressively screening applicants.

Certification and Standards: The certifier can be viewed as a two-sided supplier. The certifier

sells tests to a privately informed applicant. The certifier “indirectly supplies” certified applicants

Hiring standard represents the minimal expected ability of an applicant that an employer is willing to hire.
%Instances of such rent-extracting certification are tiered /nested testing structures in licensing finance professionals

and for-profit talent assessment firms like ExpertRating or TestGorilla.
3Lizzeri (1999), Kartik et al. (2021) show monopolistic certification, without screening, has an informativeness-reducing

effect. I expand on this insight by showing that second-degree price discrimination by the certifier further reduces
informativeness. The certifier increases allocation to less selective employers, allowing it to pool more low-ability

applicants and thus reducing information rents.



to employers.* The certifier can utilize menus of tests to (second-degree) price discriminate the
privately informed applicant. An employer makes the hiring decision based on the applicant’s
testing outcome and the menu of testing options available to the applicant. Tests contain hard
information, as the outcomes depend on the applicant’s underlying ability. Tests also contain soft
information owing to the applicant’s self-selection into different testing options made available by
the certifier.

Employers can set high standards to drive out lower ability applicants when testing is suffi-
ciently informative and costly. Although a convenient screening tool, an excessively high hiring
standard can be counterproductive when employers compete for a limited pool of applicants. A
competing employer might be able to poach potential high ability applicants by undercutting an
employer with stricter standards. These considerations highlight the strategic role of hiring stan-
dards in addition to the aforementioned screening role.

Another strategic aspect of hiring standards is their ability to influence the tests designed by
the certifier. As the applicant’s willingness to pay for a test depends on the employers” hiring
decisions, the hiring standards also affect the demand for certification tests.” This way, employ-
ers’ hiring standards and the test allocation are jointly determined in an equilibrium. Due to this
feedback, inefficiencies in test allocation can lead to unexpected consequences for employer com-

petition.

Modeling Preliminaries: I consider a monopolistic certifier (test designer), an applicant who
is partially and privately informed about his ability, and two employers that demand certified
applicants and are differentiated by their reputation.®”

The model abstracts away from a wage-setting mechanism to focus on certification’s impact
on employer competition. Such considerations also have practical merit; entry-level workers or
workers in regulated professions face similar wages across employers, but they might prefer some
employers over others due to wage-independent aspects like job mobility or workplace environ-

ment.8

4 An alternate setting could allow the certifier to charge a price to the employers for revealing an applicant’s test

outcome. In this case, the certifier can be viewed as a direct supplier to the employer. I comment on this in section 7.2.

SInformation is valuable only through the decisions it induces.

®Many examples of professional certification, including the ones alluded to above, involve third-party certification
that is not necessarily monopolistic. Yet the monopolistic certification is an economically relevant benchmark, and
insights from the analysis are useful for other settings as well.

"Restricting employers to a duopoly is for expositional ease; the results and techniques readily generalize to more
employers.

8In section 7.1, T present an extension with wages. The main insight there is a negative result. If the certifier can flex-
ibly design and price information (tests), then vertical differentiation of employers alone does not lead to meaningful

wage competition.



I model imperfect employer competition through a vertically differentiated duoposony. I con-
sider two employers that differ in their utility to the applicant upon being hired. I call them the
top employer and the bottom employer. The utility from joining the top employer is greater than
that from the bottom employer, and this is the same across all applicants. Employers rely on test
outcomes to assess the ability of a potential applicant. Both employers have the same value for an
applicant of a given ability; employers have a higher utility for higher ability applicants.

To focus on employer competition, I assume employers have greater bargaining power than
the certifier. In particular, employers can commit to a hiring standard rather than choosing their
standards in response to the mechanism designed by the certifier. Employers affect the demand
for certified applicants by committing to hiring standards.

The applicant is partially privately informed about his ability. I refer to the applicant’s belief
about his ability is his type. As test outcomes depend on ability, the applicant’s value for any
given test varies with the belief about his ability. In particular, the applicant’s type determines his
willingness to pay for a test.

The employers and the certifier do not observe the applicant’s type (and ability), and have
a common prior F. I assume that in the absence of the certifier, there is a market failure, as the
applicant is always left unemployed. In particular, I assume that the prior expected ability of the
applicant is below the minimum expected ability of the applicant that the employers are willing to
hire. This makes the certifier’s ability to generate hard information (ability-contingent signaling)
central in preventing market failure.

Due to uncertainty about the applicant’s type, the certifier faces a screening problem when
selling tests to the applicant. Tests are multi-dimensional instruments, each comprising a collec-
tion of outcome distributions indexed by the applicant’s underlying ability.” The variation in a
test’s value across different types of applicants depends on the variation in the test’s ability con-
tingent outcome distributions. I restrict attention to binary ability to simplify the analysis of the
screening problem faced by the certifier. The applicant is either high ability or low ability. The
applicant’s type is then captured by the probability he assigns to being high ability. Types are
single-dimensional, sidestepping intricacies associated with the design of selling mechanisms in
the presence of multi-dimensional type spaces.

Along with the screening problem above, the certifier faces an information design problem.
Tests are valuable to an applicant only if they persuade the employer to hire the applicant. Hiring
standards constrain the information a test must generate to persuade an employer. This restricts
the certifier’s ability to pool high and low ability applicants, thus constraining the surplus that
the certifier can generate. The certifier needs to trade off surplus generation and information rents

from screening friction, while conforming to hiring standards set by the employers.

9In economics and statistics literature such tests are often referred to as Blackwell (or statistical) experiments.



The interaction of the screening and information design problems results in inefficiencies that
are characteristic of certification markets. The certifier reduces the informativeness of tests by
pooling low ability applicants with high ablity applicants to extract more surplus from the appli-
cant. As the certification mechanism and hiring standards are equilibrium objects, these ineffi-

ciencies spill over onto the employers” decisions.

Results: In the model, screening frictions faced by the certifier lead to two distortions relative
to a benchmark where the certifier observes the applicant’s type at the time of contracting. The
benchmark captures the information design part of the certifier’s problem (see section 4).

The first distortion is exclusion; there is an increase in the chance that the applicant is left unem-
ployed. When facing a privately informed applicant, the certifier resorts to second-degree price
discrimination. This involves offering a menu of different testing options at varying prices. The
optimal selling mechanism for tests leads to exclusion whenever the expected ability of the ap-
plicants is low enough. In the presence of screening frictions, the designer does not sell to some
types, increasing unemployment.!’ For exclusion to occur, it’s crucial that the certifier needs to
generate informative tests to induce employment. There is an excessive reduction in labor supply,
relative to the benchmark, indicating that the inefficiency in test allocation amplifies certification’s
role as a barrier to entry for the applicant.

The second distortion is reduction in informativeness; the certifier distorts the test towards allo-
cating the applicant to less selective employers with a greater probability. Less selective employers
set lower hiring standards and are willing to hire applicants with lower expected ability. Pooling
a larger quantity of low ability applicants helps reduce overall information rents, as it reduces the
difference (heterogeneity) in test outcomes for high and low ability applicants. The certifier bene-
fits from a greater mass of low ability applicants not only through changes in the applicant’s gross
utility but also through reductions in information rents conceded to the applicant. This informativ-
ness reducing effect of second-degree price discrimination is highlighted by Theorem 1 in section
5.2. Theorem 1 shows that whenever the top employer sets a higher standard than the bottom em-
ployer, the certifier allocates the applicant to the bottom employer with positive probability (and
sometimes allocates the applicant only to the bottom employer). This contrasts with the bench-
mark, where the certifier allocates the applicant only to the top employer against a subset of these
standards.

Although tests that allocate the applicant to the top employer fetch higher prices, they also
raise information rents disproportionately when the top employer sets a higher standard than the

bottom employer. Higher standards result in a smaller quantity of low ability applicants, leading

0This distortion is reminiscent of exclusion results from the literature on non-linear pricing, see Armstrong (1996)

for example.



to greater heterogeneity in willingness to pay across applicant types and thus greater information
rents. When the bottom employer sets a low enough standard, the certifier might prefer allocating
the applicant to the bottom employer, even when it reduces the applicant’s gross utility. This high-
lights an increase in the bottom employer’s market power vis-a-vis the top employer, apparent in
the relative selectivity of the employers. Compared to the benchmark, the gap between the hiring
standards set by the top and the bottom employers becomes narrower, leading to constriction of
standards.

I demonstrate this effect on employer competition by Theorem 2. In the benchmark allocation,
if the bottom employer is weak (the utility that the applicant gets from joining the employer is
low enough), then the equilibrium certification mechanism and top employer’s hiring standards
are independent of the bottom employer’s choice. In contrast, when the certifier has to screen
applicants, the equilibrium certification mechanism and top employer’s standards might depend
on the (weak) bottom employer’s choice. Due to the informativeness reducing effect of second-degree
price discrimination, the certifier might allocate applicants even to a weak bottom employer. This
incentivizes the top employer to lower its standards. Theorem 2 shows that for some parameter
values, the top employer never sets a standard of 1.1 For the same parameter values, the unique
equilibrium of the benchmark requires the top employer to set a standard of 1.

Relative to the benchmark, screening friction faced by the certifier results in test allocation that
generates a lower gross surplus in the certifier-applicant (upstream) market. Both exclusion and
reduction in informativeness hurt the top employer, but the bottom employer might benefit from
the latter. To summarize, inefficiency in test provision leads to an overall loss of surplus in the
market, but remarkably, competition among the employers intensifies.

The results of this paper identify the role of monopolistic certification in shaping employer
competition by excessively reducing the supply of high-credential applicants through reducing

the informativeness of test allocation.

2 Literature

Theoretical and empirical literature on certification is vast; an early contribution by Viscusi (1978)
points out the role of certification in preventing market breakdown. In a seminal paper, Lizzeri
(1999) explores the role of a monopolistic certifier who can sell information to privately informed
parties. But the designer in Lizzeri (1999) uses a take-it-or-leave-it offer instead of a menu of tests
and prices. Lizzeri (1999) assumes that markets do not unravel when the certifier is absent; the

prior expected ability of the applicant is above the employers’ reservation. Thus, restricting the

111f an employer sets a standard of 1, then the employer only accepts an applicant if it is certain that the applicant is
of high ability.



certifier to a single take-it-or-leave-it offer is without loss as the certifier offers an uninformative
test sold to all types and extracts all the surplus from the applicants. Kartik et al. (2021) generalizes
the findings of Lizzeri (1999) to partially informed agents; they do not allow price discrimination
by the certifier. A key insight in these papers is that a monopolistic certifier favors less informative
tests. I extend the insight of these papers by showing that second-degree price discrimination, by
the certifier, amplifies the economic force favoring less information.

In an influential paper Leland (1979) develops a theory of professional licensing in an environ-
ment where applicants invest in their ability. He shows that licensing, in the form of minimum
ability standards, can prevent market failure. Leland (1979) does not consider certification or an
information intermediary in his model; the choice and enforcement of standards is exogenous.

A well-known consequence of certification is its function as a barrier to entry (Stigler (1971)).
Certification requirements create restrictions on the supply of applicants and potentially drive up
competition between employers. I argue that inefficiency in test allocation, from certifier screen-
ing the applicant, not only further restricts the supply of applicants but also reduces the overall
informativeness of the tests.

Dranove and Jin (2010) surveys, among other aspects of certification, the economic debate
about certification’s role in quality assurance versus its role as a barrier to entry. Naidu and Posner
(2022) surveys the challenges present in regulating employer competition. Azar and Marinescu
(2024) surveys recent developments in the theory of employer competition. They focus on three
modeling approaches for employer competition — oligopoly, job differentiation, and search fric-
tions. I study an oligopolistic labor market to address a fundamentally different question, focus-
ing on the quality assurance role. How do distortions from screening affect employer competition
when the certifier flexibly designs and prices information?

Following the works of Rayo and Segal (2010) and Kamenica and Gentzkow (2011), there has
been an explosion of interest in studying information provision involving general information
structures. This has led to new insights about markets and methodological advances Roesler and
Szentes (2017), Bergemann et al. (2018), Kleiner et al. (2021), Dworczak and Kolotilin (2024). In a
recent survey Bergemann and Ottaviani (2021) describes various market mechanisms for informa-
tion provision. Using techniques from the information design literature, there have been recent
developments in the study of certification, where the certifier produces hard information. Ali et
al. (2020) has considered robust provision of hard information when the agent does not hold pri-
vate information. Asseyer and Weksler (2024) also considers the provision of hard information to
uninformed agent; they focus on a common value environment.

Combining mechanism design and information design problems has led to many interest-
ing insights in various applications. For example, Calzolari and Pavan (2006), Dworczak (2020)

have studied sequential agency problems in which upstream designers reveal strategic informa-



tion to downstream principals. Bergemann and Pesendorfer (2007), Bergemann et al. (2022) have
considered joint design of product allocation and information about the product. Frankel (2021)
considers a delegation model in a labor market environment where employers get hard and soft
information about applicants. The important difference is that the employer can observe the appli-
cant’s hard information, and the soft information is provided by a third agent (manager). Corrao
(2023) has studied screening by a monopolistic certifier, but restricts attention to soft information.

There has been some recent interest and progress in studying certification intermediaries that
generate new information and interact with partially informed buyers Weksler and Zik (2025),
Celik and Strausz (2025), Mikimattila et al. (2025), Chopra and Ely (2025). In Weksler and Zik
(2025), the agents seeking certification are privately and partially informed, but their choice of
tests is publicly observable. Celik and Strausz (2025) focuses on the role of soft and hard in-
formation (they call it screening and acquisition) in certification mechanisms for a buyer seller
framework. Mékimattila et al. (2025) focuses on monopolistic certification, similar to my single
employer benchmark, and contrasts it with the setting in which the applicant’s test choice is ob-
servable. In a related single employer model Ely (2025) studies optimal test allocation when the
applicant can credibly reveal his private type to the employer (decision maker).

The closest paper to this one is Chopra and Ely (2025), which develops analytical tools for the
mechanism and information design problems faced by the certifier in various contexts. Although
both Méakimattila et al. (2025) and Chopra and Ely (2025) describe the single employer analogue
of the intermediaries problem (see section 6.1), neither considers the equilibrium interaction of the

information receivers’ commitment and certification mechanism.

3 Model

There are four players: an applicant, a top employer, a bottom employer, and a certifier (test
designer). The applicant has ability 6 € {h,1}, unknown to all. The applicant has partial private
information about his ability represented by his type, 4 € [0,1]. Only the applicant knows his
prior type. The employers and the certifier are initially uninformed about the applicant’s ability 6
and his type y, and have a common prior F € A([0,1]) with full support and a continuous pdf f.
Each employer receives a payoff of v, > 0 from employing a high ability applicant and a
payoff of v; < 0 from employing a low ability applicant. The value vg can be understood as
the productivity of an applicant with ability 8. The expression vv, + (1 — v)v; is the expected
productivity (value), to the employers, of an applicant with expected ability v. The payoff from
employing someone with expected ability v is vo, + (1 — v)v;. Thus, the expected value of an
applicant to the employers is increasing in the applicant’s type. The employers are indifferent

between hiring or rejecting an applicant with type y = Uh__v;]. The cutoff v;,_—véil is the employers’




reservation expected ability of the applicant.

—v
Up—U

without the certifier, there is no employment. The assumption is to emphasize the certifier’s role

I will assume that 1 >

> Er[ pt |. This makes the role of certifier more interesting, as

in information generation, in contrast to the gatekeeping role of certification. If Er[u] < v;i]éjl then

the certifier enables credible signaling which prevents market failure. The certifier is a gatekeeper

when Ep[p] > Uh_f;l. In this case, markets do not unravel without the certifier, as the applicant’s
prior expected value to the employers is positive.

Imperfect competition between employers is modeled through vertical differentiation. The
applicant gets a utility of 1 from being hired by the top employer, a utility of 0 < u < 1 for the
bottom employer, and 0 if left unemployed. The differentiation captures the applicant’s wage
independent consideration, like the prestige (reputation) of the employer. The applicant can only
be employed by one employer.

The certifier facilitates signaling through selling tests to the applicant. The certifier seeks to
maximize its revenue from selling tests to the applicant. A test is defined by a set of test outcomes
M and for each 0, a distribution py € A(MEg). When the applicant takes a test, the outcomes are
drawn from pg when the applicant’s ability is . The test outcome m € Mg is revealed publicly.
The certifier sets a (certification) mechanism ®, which consists of a set of reports M and a function
from elements of M to pairs of payments and tests. To allow for voluntary participation by the

applicant, I require that the “empty message” is always available to the applicant at no cost.

Timing

1. The top and the bottom employers simultaneously and publicly commit to hiring standards
s = (st,8) € [0,1]%

2. The certifier publicly announces a certification mechanism ®.
3. The applicant chooses a report in M and makes payment to the certifier as prescribed by .
4. Employers observe the certification mechanism and the test outcome m € Mg.'?

5. The applicant chooses an employer among those whose posterior belief based on 4. exceeds

their hiring standards, and remains unemployed otherwise.

The solution concept is Perfect Bayesian Equilibrium, henceforth referred to as just equilibrium.

12] require that all employees can observe the test outcome. We can also allow the certifier to reveal test outcomes
to subsets of employers. The certifier does not gain from this extra contractual power, as on-path payoffs in revenue-

maximizing equilibria remain unchanged. See obedience constraints in section 5 for details.



Employers commit to the expected ability of an applicant that they are willing to accept (hiring
standards). This commitment assumption helps focus on employer competition, avoiding consid-
erations related to inter-market competition between the certifier and the employers.'

In a direct mechanism M = [0, 1] and Mg = A(A). The space of test outcomes (or recommen-
dations) is A = {ay,ap, 7} := {hire by top employer, hire by bottom employer, reject}. In a direct
mechanism, the test results specify whether to reject or hire the applicant. Moreover, the recom-
mendation to hire is employer-specific. The applicant reports his type u € [0,1] and in response
the certifier charges the applicant a price ¢(y) and uses py(¢t) to announce a recommendation
a € A.

A direct mechanism is obedient if it is optimal for each employer to offer employment if and
only if recommended to do so. More precisely, obedience entails that the employers” beliefs are
such that'*

E[plar] >s >E[play] > s, >E[p]r] 1)

As test outcomes are public, obedience requires that the applicant follow the certifier’s recom-
mendation. The strict inequalities in (1) follow as an applicant (strictly) prefers the top employer
over the bottom employer, and the bottom employer over rejection.

Let of,(4) := po(u)(ar) and p5(u) := pg(pt)(ay), these represent the probability of being hired by
the top and bottom employers respectively conditional on ability 0 for type u’s allocation. For a
direct mechanism (p, ¢), we can represent a test allocation as p = (0!, p?, !, o?).

A direct mechanism yields gross utility for type p equal to V() = p (o}, (1) + upl (u)) + (1 —

u) (pt(p) + upt(u)). Define the indirect utility function of a direct mechanism (p, ¢) by

Up) = V() = 9(p)
When type p misreports v # u he earns gross utility given by
V() = (0} (v) +uph(v)) + (1= o) (pi(v) +upf (v))

An direct mechanism is incentive compatible if for every u, v

Uu) > V(nv) — o(v).

13Without the commitment assumption, the certifier can manipulate the applicant supply such that the expected abil-

—
o= )"

ity of the applicant, conditional on being hired, is as low as possible (: Sequential rationality of the employer
then requires the employer to hire the applicant.

4For an incentive compatible direct mechanism ( ¢, p ), whenever fol upn(u)(a) dF (u) + fol (1—w)p;(p)(a)dF(u) >0
Bayes rule implies

Jy 1o (1) (@) dE ()
Jo mwon(p) (@) dE () + fo (1= w)oi () (a) dF ()
When fol won(p)(a) dF(p) + fol(l —w)pi(p)(a) dF () = 0, the action a is never recommended and can be removed
from (1).

Epla] :=

10



A direct mechanism is individually rational if U(p) > 0 for all p.

Given hiring standards (s, s ), the intermediary seeks to maximize revenue generated by sell-
ing tests to applicants. By the revelation principle ( Myerson (1986), Forges (1986) ), it suffices to
restrict attention to direct, obedient, and incentive compatible mechanisms (p, ¢) with full partic-

ipation. Thus, the certifier’s objective is to maximize revenue

1= [ p(0arGo)

among obedient, incentive compatible, individually rational direct mechanisms.
Moreover, by the definition of indirect utility for an obedient, incentive compatible, individually

rational direct mechanism, we have the following

1
= /O [V(p) —Ulp) ] dF(p)

Given such a mechanism with test allocation p, the payoff to the employers is

Uip) = [ Len ph) + (1~ ) o () 4EGe)

1
Us(p) i= [ Lo ph() + (1= o) o () 1 AF ()
When the choice of test allocation is unambiguous, I will drop dependence on p from the notation

of employer payoffs.

4 No Screening Benchmark

I will first present the benchmark for the certifier’s problem without screening frictions. In this
section, the applicant can not misreport his type in a direct mechanism, and thus, all test alloca-
tions are incentive compatible. As the certifier faces no incentive compatibility restrictions, it can
extract all surplus generated. This allocation is clearly individually rational. We are only left with
obedience constraints, which constitute the certifier’s information design problem. In particular,

after observing the hiring standards (s, s ), the optimal mechanism (p, ¢) solves

1
max [ V()dF()

Such that p satisfies (1).

Thus, the design of optimal tests is as if the applicant can commit ex-ante to a costless type-
dependent test. I refer to this information design problem as the efficient benchmark, and the
distortions described in section 6 are relative to this benchmark. Here, the notion of efficiency is

for the applicant-certifier market.

11



Proposition 1. The set of equilibrium hiring standards (in pure strategy) is

1 - —U i —U
E = { {(H up—op’ U/zfvz)} lf u=> U=y

{(st,sp) = (1, x) | x €[u,1]}  otherwise

Proof. See appendix A.1 O

Remark. In the absence of a competing employer, the top employer would always commit to
accepting an applicant only if it is certain that the applicant’s ability is & = h. In response, the
certifier chooses a fully revealing test for all types. This gives the employer the highest possible
surplus as v, > 0 > ©v;. When there is a competing employer, the top employer faces the risk
of losing out on potentially high ability applicants to the bottom employer. Thus, competition
restricts the top employer’s selectivity.

The certifier maximizes the applicant’s gross utility subject to obedience (1). Allocating an
applicant to the top employer yields a higher utility, but it comes at the cost of pooling fewer
low ability applicants. When the top employer sets a higher standard than the bottom employer,
the certifier might find it beneficial to allocate applicants to the bottom employer. If s, is suffi-
ciently small, the lower marginal value of allocating to the bottom employer is overshadowed by
the greater mass of applicants that the bottom employer accepts. The interplay between these

forces determines what tests are offered. The obedience constraints must hold with equality as

s,y > 5 > Ep[p]. If the top (bottom) employer hires with positive probability, then the
expected ability of the hired applicant equals the standard s; (s,). If an employer’s obedience
constraint is slack, then the certifier can pool in more low ability applicants to that employer’s rec-
ommendation, increasing the applicant’s gross utility. The trade-off described above can be seen
by substituting the obedience constraints in the certifier’s objective.

H ot

E ;ph<ﬂ)+u”
t

sp

o (1)

The terms in front of p!, and p! represent the sum of the direct value from test allocation conditional
on high ability and the indirect value from pooling additional low ability applicants. A simple
pointwise maximization scheme then gives the solution. If us; < s, the certifier only allocates
applicants to the top employer. If us; > s;, the certifier only allocates the applicant to the bottom
employer.

When the applicants” utility from joining the bottom employer is low enough, u < v;’;} , the
certifier always chooses to allocate the applicant to the top employer. Anticipating this, the top

employer chooses s; = 1.

If —L < y, then the top employer can not sets; = 1. Setting a high threshold gives the bottom

Up—0;
employer incentive to undercut the top employer by choosing s, = (1 — ¢). More generally, given

12



some s; the bottom employer can undercut the top employer whenever there exists some ¢ > 0

such that u(1 —¢)s; > U;’;l. In equilibrium, the employers must not have an incentive to lower

their standards to undercut the opponent. Moreover, if us; < s, then the top employer has a

profitable deviation s; = %’ — ¢ for some ¢ > 0. Thus, the employer must choose s, = us; =

_
up—0r°

Importantly, in equilibrium, the designer is indifferent between all the employers that hire with
positive probability. By the same argument, only the top employer hires with positive probability
in equilibrium.

Remark. The bottom employer is weak if the applicant’s utility from being hired by the bottom

—o,
U= "

tion from Proposition 1 is that whenever the bottom employer is weak, the equilibrium certification

employer is below the employer’s reservation expected ability, u <

An important observa-

mechanism and the top employer’s standards are independent of the bottom employer’s (sequen-
tially rational) actions. This can be interpreted as a “no-entry” equilibrium, where the bottom
employer is sufficiently undesirable (to the applicant) relative to the top employer. The top em-
ployer does not lower its standards, as the bottom employer is not able to poach applicants away

from the top employer.

Preview of Results: I prove two main results that demonstrate how incentive constraints for the
certifier’s problem distort the (benchmark) allocation and its effect on employer competition.

In the benchmark allocation, the certifier allocates the applicant to the bottom employer with
positive probability only if us; > s;. The first result (Theorem 1 in section 5.2) highlights the
certifier’s tendency to increase allocation to less selective firms as this reduces information rents
(informativeness-reducing effect). Roughly speaking, Theorem 1 states that, under a regularity con-
dition on the prior F, the certifier allocates the application to the bottom employer with positive
probability even when us; < s,. Moreover, for s, — us; sufficiently small (but positive), there
is a reversal in the certifier’s allocation relative to the benchmark; the certifier only allocates the
applicant to the bottom employer.

The second result (Theorem 2 in section 6.2 ) demonstrates how the distortions from the screen-

ing frictions faced by the certifier affect the equilibrium determination of hiring standards and its

effect on employer competition. In the benchmark allocation, weak bottom employer ( u < vh_f;: )

does not affect the equilibrium certification mechanism and top employer’s hiring standards. But
due to the informativeness-reducing effect, the top employer is compelled to reduce its standards

even against a weak bottom employer. More precisely, for uniformly distributed F, if the employ-
oy
Up—0;

ers’ reservation expected ability is low enough, then there is no equilibrium in which the top

employer sets the highest standard (s; = 1) even against a weak bottom employer.

13



5 Certification Design with Privately Informed Applicant

I begin by describing how incentive compatibility affects the design of the certification mechanism.

—0;

Consider some arbitrary but fixed hiring standard (s;, sp) such thats; > s, > et

Incentive Compatibility: Recall that a direct mechanism is incentive compatible if for every p, v

Up) > V(pv) —o(v).

An important quantity in the analysis of incentive compatibility is the slope of the indirect utility.
Consider a function K defined by the difference in the applicant’s utility conditional on 8 = h and

the applicant’s expected utility conditional on 6 = I.

K(w) = (oh(0) +uph (1)) = (pi(w) +uof ()

utility conditional on =k  utility conditional on 6=/

As V(u,v) is linear in the applicant’s type p, by Rochet (1987) and Chopra and Ely (2025), a test
allocation p is incentive compatible for some price ¢ if and only the following monotonicity con-
dition holds

K() = (ph () + o)) = (o} () + upl ()} is non-decreasing

Moreover, the function K describes the slope of the applicant’s indirect utility. In particular, I/ is
convex and hence absolutely continuous. The indirect utility has the following integral represen-

tation )
U(i) = U(0) + /0 K(v) dv
Importantly, a test allocation p with lower variation in 6 contingent outcomes results in a flatter

indirect utility.

Obedience: Recall that the obedience constraint is given by
E[plar] > s >E[play] > sy >E[p|r]

Revenue maximization requires that the top employer’s obedience constraint E[ u | a; | > s; holds
with equality. Assume for contradiction that p generates constraint E[ pt | ar] > s, then the cer-
tifier can improve its revenue by offering a lottery over test allocations. This lottery allocates all
types with a small probability a, regardless of 6, to the top employer, and with probability (1 — «)
the improving lottery allocates according to p. This preserves obedience and incentive compat-
ibility, but generates a greater applicant gross utility without increasing information rents, thus

increasing revenue. I present the argument for the binding bottom employer obedience constraint

14



in appendix A.2. The argument follows by splitting a small mass of applicants allocated to the bot-
tom employer, conditional on 6 = &, and allocating them between the top employer and rejection.

Obedience constraints for a revenue maximizing mechanism can be expressed as follows'?

E[plar]=s:>E[play] =sp>E[p]r]

The equality of obedience constraints is similar to the informed certifier benchmark (section 4),
but the argument used to perturb suboptimal mechanisms explicitly accounts for the application’s
incentive to misreport his type (incentive compatibility). From the definition of E [p|a], obedience

constraint can be expressed by linear equalities, whenever s; > s, > Ep[u]. 1

(1) [ ol0) 4EGo) — s [0 p)of ) dEGe) =0

(1—50) [ wob(o) dFGe) 50 [0 ol ) 2 () =0

Individual Rationality: Any incentive compatible and obedient direct mechanism is revenue
maximizing only if the individual rationality constraint is binding for some type po. More pre-
cisely, there exists a type i such that ¢ (j19) = 0. Let j9 be the smallest type with binding individ-
ual rationality. The indirect utility is then given by

— f;’OK(v)dv, if u <

Up) =
I,l .
fyo K(w)dv, ifu>up

The revenue can then be expressed as the difference between gross and indirect utility
1
m= [ V00 - U ] dEp)

= [ {vm+ [* kwavf st [ {vio - [ ko) o

Ho
As U(po) = 0, the slope of the indirect utility of all types lower than pg is negative. Thus, the
expression above increases when K increases for types y < pp. Moreover, for u < pg either
pt(u) > pt () or p¥(u) > pb(u). Marginally increasing p', or p? for types just below i preserves

incentive compatibility, and increases the revenue. But increasing p; is not always feasible as it

15The argument for binding obedience constraints is independent of whether the certifier announces test outcomes
publicly or not. Additionally, if s; < s, then in any revenue-maximizing mechanism a; is recommended with zero
probability. Thus, it is without loss to assume public test outcomes.

16The equalities imply that the expected ability of an applicant being recommended ay, is s, < s, hence the appli-
cant does not deviate. As s, s, > E[u], the obedience constraint for recommendation r follows from the law of total
expectation.
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might lead to a decrease in p? and a possible violation of the obedience constraint (1). This happens
only if p! () 4+ p% () = 1, which along with a negative slope implies p! () > 0. Using this, Lemma

1 demonstrates how a simple perturbation can still be constructed to increase revenue.

Lemma 1. Let (p, ¢) be an incentive compatible, obedient, and individually rational direct mechanism

with indirect utility U. The mechanism (p, @) is revenue maximizing only if U(0) = 0.
Proof. See appendix A.3 O

Lemma 1 implies that the revenue maximizing incentive compatible and obedient mechanism
requires that the lowest type has a binding individual rationality constraint (¢/(0) = 0 ). Impor-

tantly, this implies that the slope of the indirect utility is everywhere non-decreasing and positive.

Distortions Relative to the Benchmark: Using integration by parts, we can then express the
certifier’s revenue from an optimal incentive compatible and obedient mechanism in the familiar

virtual surplus representation, see Myerson (1981).

B | e+ uph) (5= ) | | ot +upf o) (1 - e 2
f(w) p

high ability virtual value low ability virtual value

The above expression reveals an interesting property of the certifier’s problem; under standard
monotone hazard rate conditions, see Myerson (1981), the high ability virtual value is increasing
and crosses 0 from below, while the low ability virtual value is positive and decreasing. From the

definition of K, we can express the objective as follows'”

E [p}, () + uph ()| — E [(1 R 1}(1;(;[)) K(m}

Plugging in the obedience constraint, which holds with equality, we can simplify the expression

for the applicant’s gross utility. We can simplify the objective to the following

F o o 1-F(p) > ]
E +u —E K 2
Ltph(zl) prh(]"):| K ) KW (2)
Information design tradeoff Distortion from screening

The first term in (2) captures the information design tradeoff, studied in section 4. The second
term is a distortionary term due to the certifier screening the applicant’s private information. No-
tice that the revenue generated by the optimal mechanism in the benchmark is greater than the

revenue generated when the certifier has to screen the applicant.

17To keep the notation simple, I do not explicitly index K by the test choice p.
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5.1 Certifier's Optimization Problem

Solving the certifier’s primal problem involves aggregate linear constraints (in the form of obedi-
ence) and monotonicity constraints (for incentive compatibility). The formal optimization prob-

lem can be summarized as

1—F(u)
018 ey BV W] —E [ f(u) K(”)} ®

subject to

1
(1=s0) [ wph(u) dF(w) = ¢ [ (1= p)pi(w) dF(u) 20 (Top Employer Obedience)

1
(1-— sb)/ ol () dF (p) — s /(1 — )l (u) dF(u) >0 (Bottom Employer Obedience)
0 .
K>0 (Individual Rationality)

K non -decreasing (Incentive Compatibility)

Relaxed Problem: Consider the relaxation of the primal problem (P) which does not involve the

monotonicity constraint for K.

1—F(u)
oI E[V(0] - [K(y)} ®)

subject to

(1) [ mph(00) dP(e) 50 [ (1~ () dE () 2 0

(1) [ mob(r) @B Go) — s, [ (1~ () dF () 2 0

K>0

In general, the solution to the relaxed problem (R) is not incentive compatible. To simplify the
analysis and in the interest of focusing on economic insights, I require the prior cdf F to obey the

following regularity assumption.

Assumption 1. The weighted inverse hazard ratio (11__}5(}1()}0 is non-increasing.'®

Importantly, assumption 1 leads to the following key simplification:

18 A CDF T satisfies assumption 1 if and only if there exists a non-increasing, positive function g : [0,1] — R such

that
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Proposition 2. If assumption 1 holds, then there is a solution to the relaxed problem (R) that is also a
solution to the primal problem (P). Moreover under assumption 1, any solution to the primal problem (P)

is also a solution of the relaxed problem (R).
Proof. See appendix A.4 O

Remark. The proposition follows from noting that a solution to the relaxed problem (R) has non-
decreasing slope K whenever assumption 1 holds. To illustrate this, I will provide a simplified,
assuming that the optimal test takes finitely many values, sketch which captures the essence of
the more general argument in the appendix A 4.

Proposition 2 proof sketch: Fix some test allocation p. Consider two intervals I; and I, such that
I1 < I in the strong set order.'” Moreover, assume that p is constant on I; and I,. Let the slope K
be constant on these intervals. Assume for contradiction that K(I;) > K(I;). As K > 0, one of the
following holds

1. either p!(I) + upP (L) < pi(L) + upt (L)
2. or, pl (L) + upZ(Iz) < pp(L) + ”PZ(Il)

I will show that under assumption 1, condition 1) can never happen in an optimal mechanism.

Proof for 2) is analogous (see appendix A.4). Consider subsets I{ C I; and I} C I, such that

J, =W @FG) = [, (=) dFG) >0 (M)
The main step here involves marginally changing the test allocation for types in intervals I] and
I},. We shift the test allocation for types in interval I;, conditional on 6 = I, in the direction of the
allocation in interval I. Similarly, we shift allocation for types in I} in the direction of allocation
in I]. The new test allocation is intended to flatten the indirect utility for lower types and increase
its steepness for higher types.

Assumption 1 implies that it is possible to construct a test, resulting from obedience-preserving
(and gross surplus preserving) shifts, with steeper indirect utility. As the inverse hazard rate is

decreasing, by assumption 1, the new allocation is a profitable deviation for the certifier. Roughly

A necessary condition for assumption 1 is the following Bounded Hazard Rate property

1—F(p)
f(u)
—F(u

. . 1 n o 1-F(u) . F . . .
This follows from hmﬂﬂ a0f = 1 and the fact that E=YI] is non-increasing. In particular, the inverse hazard

>1—nu

rate is bounded below by a decreasing linear function.
19Let Y and Y’ be subsets of IR. Set Y’ dominates Y in the strong set order (Y’ >g50 Y) if for any x’ in Y/ and x in Y,
we have max{x/, x} in Y’ and min{x/, x} in Y.
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speaking, the certifier benefits from pooling low ability applicants into the allocation for lower

types.
Formally, we can perturb p; on the sets I] and I;. Define, for j € {t,b} and € > 0, the following

perturbations

(L) == (1—e)pl(h) +epj(k) and  p](I}) := (1—e)p)(L2) +ep)(I1)

For equation (2), the choice above leaves the information design part of the revenue unchanged.

Thus, the change in revenue from the perturbation is given by the following

¢ (e ) -+ upb (1) =i (1) — w1 [ (S5 ) dr ()
e (el + b h) = i) et () [ (50 ) aF))

As 0t (I) +upl () < pi(I2) + up? (L), the change in revenue from the perturbation is positive if

/1 (1}(121()}0) ””'“(W—/Ié (W) dE(j) > 0

1
Dividing and multiplying the integrands in the left-hand side of the above inequality by (1 — y)

the following holds

yields

1-F) L[ 1-Fw)
L =g O B )~ [ = e (0 dFG)

By assumption 1 and (MC) the above is bounded below by

[Eféiﬁ‘ lasui) ~me e }] ARLLICEL

The perturbation p is obedient, implying p is not optimal.

From the argument above (and Appendix A.4), any solution to the relaxed problem (R) can be
rearranged to yield a payoff equivalent test allocation with non-decreasing slope K. The second
statement of Proposition 2 follows from noting that a solution to the relaxed problem with non-

decreasing slope is also a solution to the primal problem (P).

5.2 Increased Affinity to Less Selective Employers

The key theoretical insight here is that second-degree price discrimination by the certifier steers
allocations towards less selective employers. Less selective employers hire applicants with lower
expected ability, allowing the certifier to offer tests with lower payoff variation (heterogeneity)

across applicant types. The lower variation in test outcomes lowers information rents by flattening
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the applicant’s indirect utility. This highlights a unique wedge resulting from the interaction of
screening and information design components of the certifiers” problem. The certifier distorts the
test allocation by reducing the overall informativeness of tests.

In the benchmark (section 6.1), if us; < s, then the certifier allocates the applicant only to
the top employer. The first statement of Theorem 1 shows a reversal in test allocation when the
certifier has to screen the applicant. For standards with s;, — us; sufficiently small (but positive), the
certifier allocates the applicant only to the bottom employer. The second statement of Theorem
1 shows that for any choice of standards s; > s, the certifier never chooses an allocation that

allocates the applicant only to the top employer. Formally, we get the following result.

Theorem 1. Under assumption 1, there exists a constant { > 0 such that if { > s, — us;y then the
optimal incentive compatible, obedient and individually rational direct mechanism recommends a; with
zero probability (o' = 0).

Moreover, under assumption 1, if s; > sy, then the optimal incentive compatible, obedient and individually

rational direct mechanism recommends aj, with positive probability (p% # 0).
Proof. See appendix A.5 O

Remark. Theorem 1 highlights the underlying channel through which the screening frictions
faced by the certifier shape employer competition. In the benchmark in section 4, the certifier
only allocates the applicant to the bottom employer if us; > s,. When the bottom employer sets
a lower standard than the top employer, the certifier can pool a greater mass of low ability appli-
cants if it allocates the applicant to the bottom employer over the top employer. The distortions
from the screening by the certifier amplify this effect. To observe this, recall the certifier’s revenue

is given by (2)

B\ Lo + b~ [P ko

The slope K(u) is given by the difference in the applicant’s utility conditional on 6§ = h and the

applicant’s utility conditional on 6 = I.

K(w) = (oh(0) +uphi () ) = (01 (0) +upf (1))

A reduction in ability contingent variation (heterogeneity) of test outcomes decreases the ability
contingent variation in the applicant’s utility, resulting in lower information rents. A larger mass
of low ability applicants reduces the difference in the test outcome distribution conditional on
. Due to this additional benefit, the certifier “overallocates” the applicant to the less selective
employer, even if it reduces the applicant’s gross utility. The inefficiency in test allocation thus

reduces the informativeness of the tests provided by the certifier.
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6 Equilibrium Analysis

Having described the certifier’s response to standards chosen by the employers, we are ready
to describe the equilibrium. The feedback loop between the certification mechanism and hiring

standards leads to exclusion and narrower hiring standards.

Equilibrium Well-posedness: In general, for any given pair of standards (s, s;), there can be
many optimal mechanisms. More precisely, the set of solutions to (P) might not be a singleton.
Thus, the certifier’s sequential rationality alone does not pin down the certification mechanism.
This is particularly troublesome when the payoffs of the top and the bottom employers vary across
different solutions.?’ Conveniently for any given (s, s;), under assumption 1, the payoffs of the
employers are constant over the set of optimal mechanisms. Moreover, the solution set of the
relaxed program varies continuously with the choice of (s, s;). This establishes that under as-
sumption 1, an equilibrium of the certification game exists with employers playing possibly mixed

strategies in the first period. Lemma 2 formilizes these claims

2
Lemma 2. Let F satisfy assumption 1. For each (s¢,sp) € [v;’;l,l] , the employer payoffs U; and U,
are constant over the set of solutions to the primal problem (P). Moreover, the payoffs U; and Uy, vary

continuously with (s, sp).
Proof. See appendix A.7 O

Leto = (03, 05) € A([0,1]) x A([0,1]) represent a mixed strategy profile played by the employ-

ers.

6.1 Single Employer

To demonstrate the equilibrium interaction of hiring standards and certification mechanisms, I
will consider a slight variation of the model with only the top employer, or equivalently u = 0.

Given a standard s; > E[y], the obedience constraint is

(1= st)E [upy (1)) —siE [(1— p)pj(u)] =0
Writing pf = pfl + K and rearranging yields
B|(1- L) pin] < Bl - K
By equation 2, we get the certifier’s objective
By 1—F(p) ]
E |~ —E|——™2K
L] -8 | k)

20In this case, the description of an equilibrium will involve the employer’s conjectures about the certifier’s response

to a deviation from equilibrium hiring standards. This might be dependent on ad hoc tie-breaking assumptions.
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Example: Assume that the distribution F is uniform, which implies % =1 — p. The revenue

expression simplifies further by plugging in the definition of K and using the binding obedience

constraint to substitute E {1}(1()”)K(y)} with E {(1 - s%) pfl(y)} and is given by

E [(2: —1) pi(#)]

Pointwise maximizing the integrand gives that p (1) = 1 for all 4 > s;/2 and 0 otherwise. The

corresponding pj is such that p! () = a if 4 > s;/2 and 0 otherwise, where a solves

1 1
1—w)du = (1— d
o st /M( p)dpy = (1—s4) M

The pointwise optimal p, does not satisfy the obedience constraint for s; < 2/3, as the corre-
sponding & > 1. To restore obedience, the optimal solution involves allocating types below s;/2
to the top employer. When s; < 2/3, the optimal mechanism is a bang-bang test. All types below
a threshold ¢ < s;/2 are excluded (allocated to the top employer with zero probability) and all
types above pg are allocated to the top employer with probability 1, independent of 6. Obedience

constraint then implies that y solves

1 1
st/ (1—wu)dpy = (1—s) pdp
Ho Ho

Recall the top employer’s payoff from test allocation p is

Uy = E [joy o5, () + (1 — ) vy pj ()]

By binding obedience constraint for hiring standard s;

1-—s
U = <Uh+01 5 t) E [p0;,(1)]

Given the designer’s optimal response to s; > 2/3, the top employer’s payoff is

1—St 1
d
<Uh+vl 5t > St/zﬂ M

This expression is increasing in s; whenever —v;, > v, this holds as v;_”;} > 1/2. Thus, the opti-

mal hiring standard is s; = 1. When s; < 2/3 the allocation takes the bang-bang form mentioned
before. As1/2 = E[u] < —L < s, the threshold iy < s;/2 < 1/3. Moreover, the binding obedi-

Up—0 —

ence constraint implies that the designer responds to an increase in s; by increasing threshold .
As Mo < 1/ 3 <

—0
Op—

5. the expected ability of applicants that are excluded from the mechanism af-

—v,
U= "

ter marginally increasing s; is below Hence, when s; < 2/3 the top employer has a profitable

deviation by increasing it’s hiring standards. Generalizing this example we have Proposition 3
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Proposition 3. Fix u = 0. If 1}(%” ) is convex and assumption 1 holds, then the top employer’s payoff Uy

is increasing in sy. In particular, the equilibrium standard is such that s, = 1 with probability 1.
Proof. See appendix A.6 O

Remark. The above example illustrates how the applicant’s private information distorts equilib-
rium hiring standards. Unlike the benchmark in section 4, the presence of private information
leads to exclusion. To reduce information rents, the designer excludes lower types from the mech-
anism. Increasing standards results in more exclusion. Thus, the employer faces a tradeoff: higher
standards improve the expected ability of each hire, but reduce the hiring probability. In the uni-
form example, this trade off is resolved in the top employer raising its standards.

Generally, the designer can respond to increased standards in one of two possible ways. First,

increasing the probability with which the applicant gets hired. The expected ability of these new

applicants must be greater than the employer’s standard, and hence greater than —. - In partic-

Up—0
ular, this leads to a greater payoff for the employer. Second, by decreasing the probability with
which the applicant gets hired. The expected ability of the removed applicant types must be less

than the employer’s standard. But the expected ability of removed applicants could still be greater

than vh_fé;z , in which case the employer’s payoff decreases. In the example, the designer chooses

the latter of the two responses. Yet, the employer finds it profitable to increase standards as the

—o,
vp=0;”

expected ability of removed applicant types is lower than

If 1}5[()”) is convex and %)(fy()ﬂ) is non-increasing, then the designer responds by decreasing

the mass of hired applicants. But the expected ability of these applicants is below E[ y |. Hence,
the employer sets s; = 1.

6.2 Employer Competition

The choice of hiring standards represents how selective an employer can be; having more market
power corresponds to a more selective employer. The selectivity ratio given by z—f captures the
bottom employer’s selectivity relative to the top employer. A higher selectivity ratio is indicative
of a more competitive employer market.

Combining Theorem 1 and Proposition 3, we get that there is no equilibrium in pure strategy
for which s, /s; < u. Whereas in the benchmark, in section 4, the equilibrium involves s;,/s; = u.
This observation highlights the connection between the distortion in Theorem 1 and employer

21

competition.” The increase in the bottom employer’s selectivity relative to the top employer,

2IThe caveat being that the model does not always admit an equilibrium in pure strategies, and verifying the existence
of a pure strategy equilibrium requires conditions on employer payoff that are endogenously determined by the choice

of certification mechanism.
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compared to the benchmark in section 4, is a consequence of the certifier’s tendency to steer allo-
cations in favor of less selective employers (Section 5.2).

Recall, in section 4, an bottom employer is weak whenever the applicant’s utility from being

hired by the bottom employer is below the employer’s reservation standard, U;’é}l > u. In the
benchmark, when the bottom employer is weak, the presence or absence of the bottom employer
does not affect the equilibrium certification mechanism and the top employer’s standard. Theo-
rem 2 shows that even against a weak bottom employer, the top employer is compelled to lower
its standards because of the certifier’s “overallocation” to the bottom employer. This indicates

increased competition among employers.

Theorem 2. Let F be uniformly distributed on [0, 1]. There exists constants C; > Cy > 1/2 such that
ifC1 < u < —L < Cy, then ¢ is part of an equilibrium only if 0;(1) = 0, i.e. in equilibrium the top

Up—0;

employer sets standard sy = 1 with zero probability.
Proof. See Appendix A.8 O

Theorem 2 shows a peculiar spillover effect that allocative inefficiencies have on employer
competition. The theorem is driven by two central features of the certification market. First, the
nature of inefficiencies resulting from the interaction of screening and information design (Theo-
rem 1). Second, the hiring standards shape the certifier’s information design problem, resulting
in the equilibrium dependence of the certification mechanism and employers” hiring standards.
Distortions from screening have an informativeness-reducing effect on test allocation, skewing the
applicant supply to less selective employers. The bottom (”less desirable”) employer can benefit
from this effect by setting higher hiring standards, relative to the benchmark. This forces the top
("more desirable”) employer to lower its standards to prevent the bottom employer from poaching
away too many potentially high ability applicants.

7 Extensions

7.1 Wages

Consider the base model with the change that instead of setting hiring standards, now the em-
ployers compete over wages. The employers simultaneously announce wages. In response, the
certifier designs a mechanism. The applicant is hired if his expected value to the employer, condi-
tional on test outcomes, is greater than the wage offered. To model imperfect competition through
vertical differentiation, I assume that w dollars from the top employer are worth y;(w) > w to
the applicant and w dollars from the bottom employer are worth w to the applicant. Like before,

we can apply the revelation principle to focus on incentive compatible, individually rational, and
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obedient direct mechanisms.

Given wages (w;, wy,) € [0,v,)%, the obedience constraints for the employers are
E[pop + (1 —p)or [ ar ] = wy

and
E[ poy + (1= p)or [ ap | = wy

Conditional on hiring, an employer’s profit is the expected productivity of the applicant minus
the wage.
The applicant’s obedience requires that he join the employer that is recommended by the certifier.

Type p applicant’s gross utility from reporting v

Vo(p,v) = p (me(0)ph (v) +wuh(v) ) + (1= ) (7 (w0 (v) + wap} (v) )
This reduces to the base model in section 3 by defining

st—wt_vl sb—wh_vl and u =
= , = , =
Up — 0 Op — 01 ¥i(we)

We can express the applicant’s gross utility as

Va(p,v) = vi(ws) x V(p,v)

The results from section 5 can be applied to this setting. In particular, the obedience constraint
for the employers is binding. The expected value of the applicant, conditional on hiring, equals
the offered wage, leading to zero profit for employers. The certifier’s ability to flexibly design
information allows it to freely pool low ability applicants, reducing the employers’ profits. In fact,
the model predicts that vertical differentiation of employers alone does not lead to meaningful

employer competition when the certifier can flexibly design and price information.

7.2 Two Sided Platform

Consider an extension of the base model in which the certifier can charge the employers for par-
ticipating in the mechanism. This might be the case in two-sided platforms for matching workers
with employers. To fix ideas, I model the fee as a fixed fraction of the employers” profits from
the applicant match. Let &« = (a4, ;) € [0,1] represent the fraction of employers’ surplus that
the certifier charges the employers for using its services. Like before, we can restrict attention
to incentive compatible, individually rational, and obedient direct mechanisms. The analysis of
the applicant’s and employers’ problems is mostly unchanged. The certifier’s revenue from a test
allocation p is given by
arUr(p) + apUp(p) +E[ V() —U(u) |
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The above expression simplifies to

E | 1 (xoh () + x50 (0) ) + (1= ) (xlof (o) + el (0) ) | —E[U(p)]

Where x! = 1+ a;vp and t§ = u + a,0p.

From the expression above, we can see that Proposition 2 extends to this setting. When the certifier
can extract surplus from the employers, the test allocations might be more informative. The fee
charged to the employers aligns the certifier’s preference with the employers’. The distortion from
screening will stiff affect the equilibrium hiring standards, but the effect is now confounded by the
certifier’s incentive to extract surplus from the employers. Depending on the weights «; and «,

certification could be skewed in favor of either of the employers.

7.3 Beyond Binary Ability

Employers often value applicants for many employment-relevant characteristics. This becomes
especially interesting if employers value different characteristics differently. Putting aside the
question of distortion to employer competition, designing an optimal mechanism in this case is
a multi-dimensional screening problem. This poses new challenges in the design of an optimal
mechanism and the subsequent equilibrium analysis. A first step towards this should involve
the special case when all employers have similar preferences for different characteristics of an
applicant. I don’t explore this possibility, but I conjecture that the link between competition and

applicants’ private information remains in this special case.

8 Conclusion

The paper identifies a novel channel between this reduction in information and competition be-
tween employers. Second-degree price discrimination by the certifier reduces the overall infor-
mativeness of tests, and this can lead to increased competition among the employers, relative to
the benchmark, when the certifier can efficiently allocate tests. Therefore, interventions in the
certifier-applicant market might have unexpected consequences for employer competition. The
rich incentive structure of the certifier’s problem and its feedback with the employers” actions is
shared by other economically relevant examples, like rating agencies in credit markets or quality
assurance by sellers. Moreover, equilibrium feedback between the decision makers’ (employers’)
actions and the certification mechanism highlights potential regulatory challenges in information
markets more generally (see Bergemann and Bonatti (2019) for a survey of markets for informa-

tion).
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A Appendix

A.1 Benchmark

Proposition 1. The equilibrium hiring standard (in pure strategy) is

l —0] —0 . —0
_ (M =0’ Uh—271> if u> (Y]
(St/ Sp ) -

(1,x) for x € [u,1] otherwise

Proof. Note that in any equilibrium, the employer accepts an applicant only if the applicant’s

—
Up—01

expected value is positive. Thus, is a lower bound for the equilibrium standard set by either
employer. Moreover, in any equilibrium s; > s;, as otherwise the top employer has a profitable

deviation to s; = s,. The designer’s problem can be stated as

max E | e (0}, () +uph(0) )+ (1= ) (ol () + gl () |

subject to
Elpla]>s >E[pulap] > s, >E[p]r]

As sy, 5, > v;”vl > E[ u |, the obedience constraints are binding for a revenue maximizing testing
policy. If the obedience constraints are slack then the certifier can do better by allocating more
low ability applicants to the employer with slack obedience constraint. Plugging the binding

obedience constraints into the expression for the designer’s revenue yields

E| o) +ulpl(n)
t Sp
The optimal test allocation is then
(1,0) if us; <sy
(IOIZIPZ) = (0/ 1 ) if usy > sy

(a, 1—a) forsomea € [0,1] otherwise

Note under binding obedience constraint the employer’s payoff can be expressed as:

Ui(p) = <Uh — _St> E [ ppj,(n) ]

Us(p) = (o +0r 2 ) B [ oo

If s; < max (1, sp/u ) then the top employer has a profitable deviation by increasing standards.

If usy > s and us; >

v;_”;} then the bottom employer prefers to increase it standard to s, = us; — ¢

for small enough & > 0.

Finally, in equilibrium, the bottom employer should be unable to undercut the top employer. Thus,
oy
[

usy < Moreover, the equilibrium test allocation has (pf,0?) = (1,0) as otherwise the top

employer can undercut the bottom employer. This establishes the Proposition. O
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A.2 Obedience

Consider p such that E[ pt | a; ] = s¢ > E[ u | a, | > s, and a is recommended with positive
probability. There must be some positive probability set S of types such that p?(x) > 0 for all
u € S. For any positive probability subset S C S, the designer can perturb the test allocation
as described below. For all 4 € S, conditional on § = £, the new test allocates the applicant to
the top employer with probability p! (1) + up? (1) and rejects with probability 1 — pf (1) — up? (1).
Otherwise, the test allocation is unchanged. The new test neither changes the gross utility nor
the indirect utility, yielding the same revenue as p. This results in a slack obedience constraint
for the top employer. The entrance obedience is not violated as the perturbation can be made
over arbitrary subsets 5. Combining this with the argument in the main text implies that p is not

revenue maximizing. Thus, for optimal mechanisms, the obedience constraint holds with equality.

A.3 Individual Rationality

Lemma 1. Let (p, ¢) be an incentive compatible, obedient, and individually rational direct mech-

anism with indirect utility ¢/. The mechanism (p, ¢) is revenue maximizing only if ¢/(0) = 0.

Proof. Consider (p, ¢) such that the binding type is yig > 0. From the arguments in the main text,
we get that there is some non-increasing function y : [0,1] — [0,1] and € > 0 such that y(uo) = 0,
v(u) > 0 for some p € [y — ¢, po] and the following perturbed test allocation p is feasible and

incentive compatible

@50 :{ (o4 (1) +v(m), 05 (u)) if o —e < p < poand pj(u) +pj (1) <1
O

(ol (1), Oh(1)) otherwise
Wp5:{<mwwww»ﬁwn if po—e < p < o and pf (1) + P () = 1
o (i), o)) otherwise

Let S,S" C [uo — &, po) such that p!, (4) + p% (1) < 1on Sand p! (1) + p%(4) = 1 on S'. The change

in revenue from this perturbation is

/OHO {‘7(#) —V(u)+ /;0 [K(v) —K(v)] dv} Flu)du

:/0”” [/”O v(v)dv}f it [ [/ﬂ ] dwr/m (ﬂ)dﬂ—/s,(l—ﬂ)v(ﬂ)f(ﬂ)dﬂ

Ho—¢€

Ho Ho

= F(uo—e) [ adu+ [ (B = Fuo =)l r(mdp+ [ pr(w) fdy— [ (1= p)v() f(w)ap

Ho—¢€ Ho—¢€
Ho

v(u) F(p) dﬂ+/sﬂ7(ﬂ)f(ﬂ)dﬂ—/s,(1—V)’Y(H) f(w)du

HPo—e
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> 7 ) PG [ () fan

0—¢€ Ho—¢€
Notice that the change in revenue is composed of positive terms except for the reduction in the
applicant’s surplus from a deceased employment probability of low ablity applicants in the set S'.
When [0y (u) F(u) dp+ [sny(p) f(u)dp — [5(1—p)y(n) f()du < 0 we can further perturb
the test by offering a lottery of test p and the test (1,0,1,0). If p is obedient, then p has slack
obedience constraint for the top employer. In particular, we can further perturb the allocation into
P =(1—a)p+a(1,0,1,0). Where a € (0,1) is chosen such that

s /01(1 — ) dF(p) — (1 - )s; A”_(1 — )y FGdn = a(1— 1) /01 u dF (1)

Rearranging the terms, we get the following
E Ho
o (1-E) = -0 [* @ sy
t po—e

As ¢ can be made arbitrarily small, such an « exists in the interval (0,1). By the choice of «, the
perturbed test p’ is obedient.

Fors, > us; we getthatI(p) < %’], as %1] is the revenue generated by the optimal mechanism
from the benchmark in section 4. In particular, we get the following

®
a(1-11(0) ) = (1 —a) / (1= w)v(p) f(u)dp = (1 —a) (T1(p) —TI(p) )

Ho—¢

o

This implies

[(p") - T(p) >0
Thus, we can choose some a € (0,1) such that the test p’ is incentive compatible, obedient, and
yields a greater revenue than p.

Whenever s, < us; the optimal mechanism only allocates the applicant to the bottom employer
or to being unemployed (bottom employer-only allocation). If s, < us; then the bottom employer-
only allocation can produce at least as much gross surplus as any other allocation. Additionally,
as s, < sy, the certifier can pool a greater mass of low-ability applicants. Thus, a bottom employer-
only allocation minimizes the information rent by reducing K(u) = (o, (1) + upl (1)) — (o, (1) +
up? (1)) while keeping the applicant’s gross surplus fixed. In this case, the argument in text shows
that ¢/(0) = 0 as for a bottom employer-only allocation negative slope K(u) < 0 implies that

o}, (1) + b () < 1.
0

A.4 Solution to Relaxed Problem

Geometry of Optimal Tests: For the formal analysis, consider p as an element of the Hilbert
space L»([0,1] — R* F) with the usual norm topology and Borel sigma algebra. Where p =
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(o', 0%, p!, p). I maintain this assumption for the rest of the appendix.
For the relaxed problem, we can describe a test allocation p as a function from [0, 1] to the closed

convex polytope C. Where

x1+x <1
C=RxeRL | x34+4x,<1

X1+ uxy, —x3—uxg >0

Recall, the relaxed problem (R) is given by the following

¢ t 1-— F(.”)
oy B [uCoh ) ok )+ (1= ) o) + 1)) B {(M ) 1<<m]

subject to
(1—st) /01 poy () dF () — St/(l — () dF(p) >0
(1—sp) /01 pop (1) dF(p) — sy /(1 —w)p; () dF () >0
K>0

Define the feasibility set

Fi={p e 12(10,1] = [0,1)%) | o} (1) +ph() <1, pf() +pf (1) < 1,K(;0) >0 ¥ p € [0,1]}

Here p = (pfl, p’;l, pf, p;’ ). The set F is bounded, convex, and norm-closed.?? As L, is a reflexive
Banach space, F is weakly closed and hence weakly compact.”> The objective function is a con-
tinuous linear functional of p, thus a solution to the relaxed problem exists in F. The obedience
constraints satisfy the usual Robinson constraint quantification, see Robinson (1975) and ch 8 of
Luenberger (1997).* Thus for each solution p* of (R) there exists a multiplier A* = (A}, A}) € R%
such that the corresponding Lagrangian £ has a saddle point at (p*, A*). More precisely, for all
p € F and A € R?, the following holds

L(p,A") < L(p",A") < L(p%A)
Where the Lagrangian is given by

1
L(o,A) = [ (101,2), p(0)) dF(p)

22Where norm closedness folows from the fact that convergence in L, norm implies pointwise convergence almost

everywhere over a subsequence.
23Gee chapter 2 of Bonnans and Shapiro (2013) for details.
24This amounts to having non-empty interior of the set of all obedient test allocations in JF.
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Where (, ) is the usual inner product in R* and
S S () CI-FWYN o, 1=F() 1= F(p)
)= (= (o= g ) - g (o ) )
+ (pAr(L = s1), uAp(1 =sp), —(1 = p)Asse, —(1 — p) Apsy)

By the saddle point property above, we get

£lo7,A%) = max [ (100,2°), p(p) dF ()

1

= pr(r]}?é:(l(y,?x*)l p(p)) dF ()

By linearity of inner product and the fact that linear functions optimized over closed and convex

polytopes achieve optima at an extreme point, we get”
p*(n) € ex(C) forall u

The set ex(C) can be enumerated as®®

(0,0,0,0)

(0,1,0,1), (,0,0,1), (0,1,u,0), (1,0,1,0)
(1,0,0,1), (0,1,0,0)

(1,0,0,0)

ex(C) =

In particular, the optimal test allocation p* takes finitely many values. This establishes the key
assumption made in the proof of Proposition 2 sketched in section 5.1 about the optimal test taking

finitely many values.

A.4.1 Proof of Proposition 2

To prove Proposition 2 we can then extend the argument from the main text (section 5.1) to arbi-
trary ordered sets S; < Sy and their subsets S|, S} instead of intervals.
To complete the proof, I will present the calculation for case 2), not shown in the main text.

Fix some test allocation p. Consider two subsets of [0,1], S; and S, such that S; < S; in the
strong set order. Let the slope K be constant on these intervals. Assuming for contradiction that
K(S1) > K(S2) and that

P(S2) + 10} (S2) < 0} (S1) + upj,(S1)
Consider subsets S) C S; and S} C S, such that

[, waF(o = / , HAE () >0 (MC2)

ZFor a closed convex polytope X the set ex(X) is the set of all extreme points of X.
26Note, the representation of ex(C) is to emphasis monotonicity of K.
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We can perturb p;, on the sets S} and S). Define, for j € {t,b} and & > 0, the following perturba-

tions
Pu(S1) = (1 —€)p;,(S1) + 0} (S2) and  F}(S5) := (1 — &) (S2) + 20, (S1)
From equation (2) we observe that the choice above leaves the information design part of the

revenue unchanged. Thus, the change in revenue from the perturbation is positive whenever
1—F(u) 1—F(n)
E(S1) 4+ upl(Sy) — 0t (Sa) — upl(S (/()dF —/( dF >0
(0h(51) + up}(51) — 4 (S2) — upy(S2)) s \ () (W) s \ 7o) (1)

As p! (S2) 4+ upl (S2) < pt(S1) +upl(S1), the change in revenue due to the perturbation is positive

iff
(i) aroo= [, (M) e =

Dividing and multiplying the integrands by u yields

/S, 1}:;}5?)# dF(p) — /S 1= _f}g{)u dF (p)

By assumption 1 and (MC2) the above is bounded below by

e -m (S} <y maren >+

This establishes that p can be perturbed into a test p which preserves obedience and has a non-

decreasing slope K. Importantly, the last inequality holds strictly for all smooth cdf F with support

1-F(u)

[0,1] as the function ) is non-increasing and % is strictly decreasing.

A.5 Increased Affinity to Less Selective Employer

Theorem 1: If assumption 1 holds then there exists a constant { > 0 such that if { > s, — us; then
the optimal mechanism recommends a; with zero probability (o' = 0).
Moreover, under assumption 1, if s; > s, then the optimal incentive compatible, obedient and

individually rational direct mechanism recommends a;, with positive probability (07 # 0).

Proof. Recall the Lagrangian for the relaxed problem (R) is given by L(p,A) = E[ (I(1, A), p(1)) |

(see sction A.4) where

H(u,A) = <V_1}(1;()y)/u<]/l—1}(l;()m>,l—y+l;(l;()w,u<1—y+1}(1;()y))>

+ (uA (1 =s1), pAp(1—sp), —(1 = p)Asse, —(1 — p) Apsyp)
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For any optimal mechanism p* and corresponding multiplier A* we describe the optimal test
y op Y P g p P

choice by it’s epigraph.?”

epi(1(-,A"), p*(1)) = [ epi(I(, A7), x)

xeex(C)

The equality follows from the saddle point property. The following conditions are sufficient for a

test p* to only assign the applicant to the bottom employer
epi(I(-,A"), (0,1,0,0)) Cepi(I(-,A"), (1,0,0,0))
epi(1(-,A"), (0,0,0,1)) Cepi(I(-,A"), (0,0,u,0))
epi(I(-,A"), (0,1,0,0)) C epi(I(-,A"), (1,0,0,0))
epi(1(-,A"), (0,1,0,1)) Cepi(I(-,A"), (1,0,1,0))
The above holds simultaneously if the following equations hold simultaneously
Ap(1—=sp) —Af(1—s;) >1—u,
uAisy — Aysp >0,
M —s) —uAi(1—s;) = 0,
Ap(p—sp) = Ai(p—s1) 21— u

Lets; > s;, and set A} = AZ;—; + ¢ for small ¢ > 0.”® By the choice of A} and s; > s, the second
and the third equations above are satisfied. Moreover, the first equation and the fourth hold if the

following holds for all u

USt

A <u—sb—<y—st>sb) Ce(p—s) 21w

Simplifying gives us the following sufficient condition

/\Zy(ust —sp) + (1 —u)sssy Ce(l—s) > 1—u
USst
As p* is a bottom employer-only allocation, it comprises of tests of the form (0,0,0,0), (0,1,0,1),
or (0,1,0,0). By monotonicity of K, the allocation (0, 1,0, 0) is for higher types than test allocation
of (0,0,0,0) or (0,1,0,1). Note that ( I(-,A), (0,0,0,0) ) = 0and ( I(p,A), (0,1,0,1) ) = up +

?’The epigraph a function f : X — [—co,c0] valued in the extended real numbers is the set epi f = {(x,7) €
XxR:r>f(x)}
BIf s < s then the optimal allocation only allocates to the top employer with positive probability. In particular, this

implies that { < (1 — u)-—2%

[
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Ap(p —sp). Inparticular, (1(p,A), (0,1,0,1)) crosses (1(-,A), (0,0,0,0) ) at most once from below.
We get that the optimal test is of the following form
(0,0,0,0) u €10, o)
Coh™ (1), o (), o1 (1), 1" (1) ) = 4 (0,1,0,1) 1 € [po, ) (Pro)
(0,1,0,0) u € [u1,1]

AsE[u] < —L < s, < 1, wehave 0 < pp < 1and g < w1 < 1. By first order necessary

Up—o —

conditions for p, we get
u

Positivity of the multipliers implies yo < s;,. Plugging this into the required inequality, we get

Ap =

w(usy — sp) + (1 — u)sesp
st(sp — po)

As ¢ > 0 can be arbitrarily small, it suffices to consider

—e(l—s)>1—u

u(ust —sp) + (1 — u)sssy
st(sp — po)
Dividing and multiplying by s¢(s, — po) and then simplifying the above inequality gives us the

>1—u

following sufficient condition

sipo(1 —u) > sp — us;

Note that the above holds whenever s, < us;.
We have shown that when the above condition holds, then there exists A* > ]Rz+ such that the

bottom employer-only allocation (p,,) optimizes the Lagrangian pointwise. In particular, (0,,) is a

—v; pp(1—u)
Up—U; 2

[u]. I present more details

solution to (R). The first statement of Theorem 1 follows from setting { = . Here p; is

the smallest value for jig across all s;. This is positive as s, > -
about this lower bound in section A.6. The important detail being y; > 0 and hence ¢ > 0.

To prove the second statement, assume for contradiction that for some s; > s, the optimal
test allocation is top employer-only. By reasoning similarly to the proof of the first statement, the

optimal top employer-only test is given as following

(0,0,0,0) € [0, o)
Coi" (1), o1 () o1 () (1,0,1,0) € [po, pu1) (0r0)
(1,0,0,0) p € [p,1]
Where (p,,) pointwise maximizes the Lagrangian £(p,A) = E[ (I(1,A), p(n)) ] for some choice of

multiplier A* = (A, A};) where
1

_,VO

A=
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and s; > pg > 0. To establish a contradiction, consider the following two cases:
Casel: If s, — )f‘—b < o then the line ( I(-,A*), (0,1,0,1) ) crosses ( I(-,A*), (0,0,0,0) ) before
(1(-,A*), (1,0,1,0) ) (i.e. before pp). Thus (p,,) does not pointwise maximize L£(-, A*).
Casell: If s; — %Z > o then the line ( I(-,A*), (0,1,u,0) ) crosses ( I(-,A*), (0,0,0,0) ) before
(1(-,A%), (1,0,1,0) ) (i.e. before py). To see this, let i’ be such that ( I(y’,A*), (0,1,4,0) ) = 0. In
particular

u+u' (1—sp)A; —use(1—p")A; =0

Eearranging gives the following

ox ((1—sp)Ap+usiAy) =u Ho
St — Mo

As sy — = > poand as A} = we get the following

F

,”/><<1_Sb+ St )S Ho
Sp —Ho St — Ho St — Ho

Ass; > 5, we get that ==L < 155t plygging this in the left-hand side above shows that

Sp—Ho St—Ho

#< o

Thus (p,,,) does not pointwise maximize £(-,A*) for any value of A; € R,. This establishes the

second statement of the theorem. O

A.6 Single employer

Proposition 3: Fix u = 0. If 1}5};‘ ) is convex and assumption 1 holds, then the top employer’s

payoff U; is increasing in s;. In particular, the equilibrium standard is such that s; = 1.

,1). Let
T(s¢) = E[ V(u) ] be the expected gross utility generated by the optimal mechanism corresponding

Proof. First, note that the employer never chooses sy < E[ 1| < . Fix some s; € (—

—U;’U

Op Ul

to standard s;. As the obedience constraint must bind for the optimal mechanism, the employer’s
payoff is given by:
(stop+ (1 —s¢)v; ) T(st)

The employer prefers a standard s; > s; over s; if and only if

(sion+ (1 —sp)v) T(sp) — (seop+ (1 —s¢)vy ) T(s¢) >0

< 5T(s;) —s:T(st) >
Oy — 0

(T(st) = T(st) ) C)
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As argued in section A.5, under assumption 1, the optimal mechanism can be found among the

ones with he following structure:

(0,0) u €10,p0)
(on(), pi(1) ) =4 (L,1) p € [po, 1)

1 1
Where [ pdF(p) = % [, (1= p)dF(p).
For a given s;, the optimal mechanism can be described by the tuple ( po(s;), p#1(s¢) ). Consider the

Lagrangian, £(puo, p1,A;s¢), corresponding to the designer’s constrained optimization problem,

given by
# 1 1-F
[ age s aro+ [ (paaa-s) - 2220 arg)
Ko 2 f(u)
Let po(st), u1(st), A(s¢) be the optimal solutions. Note that A(s;) > 0 and by assumption 1 the

inverse hazard rate 1;5)}’) is decreasing.

First, we will show that o (s;) is increasing. Using the first order necessary conditions with respect

to yp and p; we get the following
1

5t — o(51)
. :l 1—F(pi(st))
Mo = 5 M A= ) )

First, I will handle the case when there is a corner solution with y;(s;) = 1. Only the first order

Ast) =

necessary condition for g holds. By positivity of the multiplier, we get jio(s;) < s;. By the saddle

point property of the Lagrangian, we must have 1 + A(y —s;) > u(1+A(1 —s;)) — 1}54(54)
)

all u € [0,1]. Importantly, 1 + A(y — s;) becomes positive before p(1+ A(1 —s¢)) — 1_F()” turns

fu
positive. As 1+ A(u — s;) is positive for yu > pg and as u(1+ A(1 —s¢)) — f(if)”) >u— }a()”), we

get that p is smaller than y’ where p/ — 1}{}5,’;,) = 0. I will show later that this implies yo < Er[p].

for

If the top employer marginally increases its standard from s; to s; > s; and p1(s;) = 1. For

obedience to hold ji(s;) > po(st). The new mechanism removes types with the lowest expected

—
o=’

ability, which is below Ep[u]| < thus the top employer’s payoff increases.

Now, let’s consider the case with an interior solution. Define the following function of (uo, j1, s¢)

1-F(m) |
T ) f (1) ] !

Q1 (po, p1;5¢) i= 5t~ Ho {1+ (

St

Now, consider the obedience constraint
t1(st)

(1=s0 [ wdrG s ["" 0 =) dre) =0

o(st) po(st)
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Define the following function of (uo, jt1,st)

wdF() — sy 11%1——u>dpoo

Qa(po, p1s8) == (1 —s¢) /1

Ho
Let Q(po, 11;st) := ( Q1, Q2 ). By the first order condition and binding obedience constraint, we
get
Q(po(st), pi(st);st) = (0,0)

The Jacobian of Q is given by

J(po, pa; se) == [ o

Ho 1—F(p)
= P 1+ et |
—f},OVdF M) - }Zf(l—y) dF(p)

Where

and

1 1-F(1) St—Mo 9 F(m)
Ju= St [1+ (I=p1)f (1) } st O ((1 w1 f(n ))
(st — po) f(po) —=se(1 = 1) f (1)
From the above, we get

o1 1— F(u1) (st = po)? 9 ([ 1-F(m)
det Ju =1 Wﬂmﬂ”a—mmmﬂ a mmwxa—wﬂm>

Assumption 1 1mpl1es e (%) < 0, thus

det J,

’ Ho St Hl(St),St) >0

By Implicit Function Theorem ( po(s;), p1(s¢) ) can be described by an implicit function g. In
particular g(s¢) = ( po(st), pa(st) ) and

st = It <
Where
= de:] |:St(1 w)f (1) _St;m% W)) ]
p (st — po) f(po) [1 T =) f i) }

We can conclude that a% Ho(st) > 0as

po(st) (L —pa(se)) f(ua(st)) [1 - (

St

— F(pa(st)) }
1—pa(se)) f(pa(se))
(s S po(st) o — F(pa(st)

ss Ol <(1 - m(St))f(m(St))) =0
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This establishes that o(s;) is increasing.
Next, we will show that p1(s;) is decreasing. After some algebra and using the fact that the obe-
dience constraint binds, we get a%tm (st) equals

dei]ﬂ [slf <1+ (1 —114_1(1:1%();;1]((:;!)1)(50)) (VO(St)(St_VO(St))f(VO(St)) _/}:)(Sf)ﬂdF(‘u))}

The sign of a%f p1(st) is determined by

1

po(se) (51 = polse)) f (po(se)) = [ wdE(p)

po(st)
< po(st) < (1= po(se)) f(so(st)) = 1+ F(po(sr)) )

Assumption 1 implies the bounded hazard rate property. Thus, we get

(1 —po(se)) f(no(st)) =14 F(po(st)) <0

- (St) <0

9
d St =
This establishes that 1 (s;) is decreasing.

By the first order condition for y1, we get the following

1—F(pu(st))
f(pa(se))

By the binding obedience constraint, we get that jio(1) = y1(1). Using this and evaluating equa-

pa(se) (14 (1 —se) Alse) ) — =1+ (pa(se) —st) A(se) 4)

tion (4) for s; = 1 we get

1-F(u(1) _ 0
f(ua(1))

F(p)

By assumption ??, 1}@[) is convex and we can apply Jensen inequality to claim the following

p(l) — ©)

e[ 1-F(y) 1—F(E[u])
E“‘]‘E[ ) ]2 FE))

— E[pu]-

Moreover, u — 1}&()” ) is increasing by assumption 1. Equation (5) then implies that (1) =

#1(1) < E[ p |. Monotonicity of po(s;) then establishes po(s;) < E[ i | for all s;.
The designer responds to a marginal increase in standards by increasing yo and lowering 1. As

Ho < U;_U;’ , the average ability of applicants excluded by the designer is low enough. In particular,

equation (3) holds for s; = 1 and for all s; € [i 1).

up—0v;’
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To complete the argument, we need to show that pg(s;) > 0 for all s; > E[yu]|. This rules out the

corner solution with po(s¢) = 0. As s; > E[u], by obedience constraint we get
po(st) =0 = p(s) <1

Using the first-order necessary conditions, we get

1- F(u(s1))
5 s LT T () ()

This leads to a contradiction as 1 + %
bound in section A.5 (py > 0).

> 1. This also establishes the required lower
O

A.7 Equilibrium Well-posedness

We first show that in any pure strategy equilibrium the top employer’s standard s; > s;. Assume
for contradiction that s; < s, then the designer chooses to allocate to only the top employer. If
st < sp, any test allocation p is revenue equivalent to a perturbed test allocation p. Where p is
defined such that for all y and 6, the allocation ¢ recommends the applicant to the top employer
with probability pf, (1) + up}(u) and rejects with probability 1 — pfy () — up} (). This introduces
slack to the top employers” obedience constraint, as s, > s, thus p is not optimal. By section A.6,
the top employer has a profitable deviation of setting s; = s;. This shows there is no equilibrium
(in pure strategy) for which s; < sj,.

Now we will prove the continuity of the employer payoffs, which will allow us to establish the

existence of a mixed strategy equilibrium.

2
Lemma 2: Let F satisfy assumption 1. For each (st,8p) € [vh;—vi;l' 1] , the employer payoffs U; and
U, are constant over the set of solutions to the primal problem (P). Moreover, the payoffs U; and

U, vary continuously with (s, sp).

Proof. 1 present the proof in two parts. First, I will establish the conditions for Berge’s Maximum
Theorem (see chapter 17 in Aliprantis and Border (2006) for reference). This will establish the
upper hemicontinuity continuity of the set of optimal solutions to (P). Second, I will show that
for any given s = (s, s5), the employers’ utility U; and U, are constant over the set of optimal
mechanisms. This, along with upper hemicontinuity of the solution set and contunity of U, U} in

the test allocation p implies continuity of U; and Uj, in s.

Claim 1: Conditions for Berge’s Maximum Theorem (Theorem 17.31 in Aliprantis and Border
(2006)) hold.

42



Recall the set of feasible tests is F (see A.4) and that F is bounded, convex, and weakly com-
pact. The objective function is continuous on the feasible set. Thus, to use Berger’s Maximum
theorem, we need to establish the continuity of the following set-valued map representing the
obedience constraints.

Define the obedience constraint correspondence by

1—s¢) [y ol () dF () — s [ (1 — p)pb(p) dE(p) =0, }

(
O(st,sp) 1= F
) {p - ‘ (1—sp) Jy pol(u) dF () — s [ (1 — )b () dF(u) =0

and its graph

Gr(0) ::{(s,p)|s€[ l ,1} ,peO(s)}

Op — 0

The correspondence O has a closed graph because the equalities defining the set O(s) are jointly
continuous in s and p. As O is compact-valued, the above implies that O is upper hemicontinous.

Lower hemicontinuity follows from considering lotteries over test allocations

p=01—¢e—e—0—06p)-p+ &-(1,0,0,0) + ¢&-(0,1,0,0) + & -(1,0,1,0) + 6, -(0,1,0,1)

—o,
vp—v;’

2
1) . Note that for any open set Y C F such that p € Y there exists
arbitrarily small €;, &, &, 0, > 0 for which p € Y. In particular, there exists an open set Nb(s) such
thats € Nb(s) and YN O(s') # @ for all s’ € Nb(s). For boundary values s; € {%, 1} we set

Op

Fora givens = (s, ) € (

gj or 6; equal to zero, appropriately.

Claim 2: For any given s = (s;,s;), the employers’ utility U; and U, are constant over the set
of optimal mechanisms.
Fix some (s;,s5). Represent the set of solutions to (R) by X*(s). Recall for an optimal test

allocation p the obedience constraint binds. Thus for any p € X*(s) we get

Ui(p) = <Uh _— _St) E [ ppj,(n) ]

St

1-—s
Uy (o) = (vh +o— b) E | el (1) |
b
In particular, U; and U, are constant over X*(s) if the following holds
p,p € XM (s) = pu=pj, (6)

I will show that the above statement (6) holds by means of contradiction. Assume that there exist
p,p" € X*(s) such that p, # pj,. In particular, there exists a set S C [0,1] of types with positive
measure such that p, () # pj, (1) for all 4 € S. Note that X*(s) is convex so ap + (1 —a)p" € X*(s)
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for all « € [0,1]. We will proceed in two cases:
Case I: There exists a positive probability subset S’ C S such that for all 4 € S’ either K(u; p) >

0

or K(u;p') > 0. In this case, we consider some « € (0,1) and define p := ap + (1 —a)p’. On

the set S’, we have 0 < p!, p? < 1and K( -; p) > 0. The previous statement follows from the

characterization of extreme points. We can then choose two positive probability (ordered) subsets

S} < S C S'. Finally, we perturb p on S/ by slightly increasing ¢? and slightly decreasing p!. To

maintain obedience, we also perturb g on S} by slightly increasing p!, and slightly decreasing p?.

A

calculation similar to proof of Proposition 3, in section A.4, shows that constructing such a pertur-

bation without violating obedience is feasible and yields strictly greater revenue, a contradiction.

Case II: For all u € S the slope K(y;0) = K(p;0') = 0. Define p := ap+ (1 —a)p’ and 7 :
inf{ p | K(u, p) > 0}. We can partition [0, ] into intervals [p;, pi1) for 0 = po < 1 < pp < 3
us < . Where

2 i i
/y pdF(u) = 0‘/0 #eLip—a000)) dF(p) + (1 - 0‘)/0 m-Lip—,010) 4F (1)

4

Ha W i
L A =« /O e Lo=010)) d4E () + (1 — ) /0 - Lo=01u0)) 4F(0)
3
M3 i i

[ #aFG = [T onny 4B + (1=a) [ Ly —uonn) 4F()
2
w2 7 7
! dF(p) = “/0 101,01y 4F () + (1 - “)/O weLiy=0101)) 4F (1)
1

<

The partition constructed above rearranges the mass of high ability (¢ = &) applicants for types

below 7i. Define p which equals p for types greater than i and defined as following for types u <
(0,0,0,0) u<mm (0,0,0,0) u<wm
(0,1,0,1) p € [, p2) (0,1,0,1) pe [ n)
5() = (1,0,01) péelup) ) 0Lu0) pelp )
(1,0,u,0) p € [W', p3) (,0,u,0) € [p2, p3)
(0,1,1,0) p & [ps, pa) (0,1,u,0) p & [ps pa)
(1,0,1,0)  p & [pa, 7] ( (L0,1,0) p & [pa ]

Where 3’ is chosen such that

i
/0 (1—pn)- (1{5:(0,1,0,1)} + 1{ﬁ:(u,0,0,1)}> dE(p)

3 I3
= [ (=) Lpmorony 4P + (1= 0) [ (1= 1) 1001 4E(R)

By construction, we get
1 1
| = wptw ar(e = [ @ —wet) aF)
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and 1 . 1 .
| el arGo) = [ el dE )

for j € {t,b}.

When p # o/, the allocation p induces slack in the top employer’s obedience constraint. The
test allocation p is constructed such that the mass of low ability applicants hired by the bottom
employer is preserved, and the mass of low ability applicants hired by the top employer is pushed
forward to higher types. As (1 — ) is decreasing, the test allocation p leads to a strictly lower mass
of low ability applicants hired by the top employer relative to p. We can construct a perturbation
" = pp+(1—p)(1,0,1,0) for B € (0,1). We can choose f8 so that the top employer’s obedience

constraint binds, leading to a contradiction as the allocation p” yields a greater revenue than p. [

By the Glicksberg’s theorem, see Fudenberg and Tirole (1991), continuity of the first period
payoffs and compact choice sets implies the existence of an equilibrium with possibly mixed
strategies played by the employers.

A.8 Proof of Theorem 2

Theorem 2: Let F be uniformly distributed on [0,1]. There exists constants C; > C; > 1/2 such

thatif C; < u < v;’;l < Cy, then o is part of an equilibrium only if 0;(1) = 0, i.e. in equilibrium

the top employer sets standard s; = 1 with zero probability.

Proof. Fix some mixed strategy profile ¢ = (03, 0;). First note that it is without loss to focus on

equilibrium where inf supp (o) and infsupp(c;) are greater than the reservation expected ability
oy
op—0;"

For uniform distribution on [0, 1] we get that

(11:;5%4) = 1. The certifier’s objective (see equa-

tion (2) and section (A.6) ) can be represented by

EKZS]:— >pi(ﬂ)+u<zsf— )pﬁ(uﬁ (7)

2u_ then for all s, € supp(0;) and s; = 1 the line u (25—5 - 1) lies strictly above

1+u’

the line 2y — 1 for € [0, 1]. From equation (7), we observe that if sup supp(c;,) < 2% and s; = 1

then the certifier only allocates the applicant to the bottom employer. In particular, for s; = 1 the

If sup supp(op) <

top employer gets a payoff of zero against the bottom employer’s strategy c;,. This implies the
top employer plays s; = 1 with zero probability as otherwise the top employer has a profitable

deviation by playing s; = inf supp(c;) + € for some small € > 0.

Now consider oy, such that sup (03,) > 2% In perticular o3, ( ({2%,1] ) > 0. As sup supp () >

2u

115 the strategy 0}, puts positive probability on actions s, for which the lines u (25—5 - 1) and 2u —1
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intersect. The point of intersection is given by p = (%S_h”)j’s More generally if the lines u (— — 1)
and — 1 intersect on the interval [0, 1] then the intersection point is given by & ”)stg Note that

(1—u)sts

the intersection point Z(Sb_mt) is strictly increasing in s;.

The bottom employer never plays s, = 1 with positive probability in equilibrium, as s, =
1 yields a payoff of 0 to the bottom employer for any standards chosen by the top employer.
If 03(1) > 0 then the bottom employer’s total payoff is zero as the bottom employer must be

indifferent between all strategies in support of 0. Thus, a mixed strategy o3, with 0;,(1) > 0 is

—
Up—0;

part of an equilibrium only if o; ( ) = 1 as otherwise the bottom employer has a profitable

Uz
Up

—Y
Up—0

deviation of playing s, = -+ 6 for some ¢ > 0. But the top employer never plays s; =
with probability 1 in equihbnum. Thus 03,(1) = 0.

2u
1+u’

(7) results in the following allocation

Consider any s;, € ( 1) and s; € [1 —¢,1] for small ¢ > 0, point wise maximizing equation

(0,0) pel0,s,/2)
(Ph(), 40 ) = § (01) e [sp/2, Gt
(1—u)sts
(110) Be [Z(Sb—us,l)l’l]

The total mass of low ability applicant that can be pooled in under this point wise optimal alloca-

1
/ (1—p)du
Sb/Z

Using binding obedience constraint we get that the total mass of low ability applicants that is

tion is

needed for obedience is given by the following

(1—u)sysy,

1 —Sp /Z(Sb—ust) 1-— St 1
PRRELY
s Jon T TS o rer

The first term is for low ability applicants required for bottom employer’s obedience constraint
and the second term is for the top employer’s obedience constraint. For s; = 1, the pointwise

optimal test allocation is obedient whenever the following inequality holds

(1 u)sb

1
/ -y — = Sb/ "wdp >0
Sb/2 Sb sb/2

Simplifying the above expression, we get

1-— u)zsb(l — Sb)
(sp — u)?

(2_5b)2_( +sp(1—sp) >0

Equivalently
(4 —=3sp) (sp — u)* = (1 —u)?sp(1 =) >0
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The above is strictly greater than 0 when s, > ﬁf‘ and u > 1/2. Let C; = 0.51 and u > 0.51,

under this choice of u the pointwise optimal test allocation is obedient for all s, € (1%‘“, ) and

st = 1. Moreover, because of the strict inequality for small enough & > 0 the pointwise optimal
test allocation is obedient for all sb € (1+u' 1) ands; € [1 —¢1].

froms; =1tos; =1—¢is prof1table for the top employer against any bottom employer standard

sp € (1 2,1 — ¢), where ¢ > 0 is small enough. Combining this with the fact that oy ( (%, 1)) >

0 implies that in equilibrium ;(1) = 0.

Consider s, € (24,1 —¢), where € > 0 is small enough such that the point wise optimal test

14+u”’
is obedient and 0( [1 —¢,1] ) = 0. The requirement 03, ( [1 —¢,1] ) = 0is an equilibrium restriction

on 0y,; we will verify this formally after constructing the top employer’s profitable deviation. If
the top employer deviates from s; = 1 to s; = 1 — € then the intersection point of the coefficients

in front of p! and p? in equation (7) shift from ; ”)Sg to (isbu)ﬁl SZ%’ As (}Sh”);l)’ > (%Sb”)ﬂl SZ;‘; the

optimal mechanism allocates more applicant types to the top employer under s; = 1 — ¢ when
compared to s; = 1.

Let Hy, Lo represent the mass of high and low ability applicants allocated to the top employer
by the pointwise optimal mechanism for s; = 1, respectively. By obedience Ly = 0 and as argued

previously
1

HO = [lfll)sb ]/l dl/l

2(sp—u)

Let Hy, L1 be the additional mass of high and low ability applicants added to the top employer,

respectively, when s; = 1 — e. By binding obedience, we get

Hy + Hy o
Hy+ Hi + Ly

S
— L1 — ?(HO'i‘Hl)

1
Combining the above, we get that the expected ability of the additional applicants added to the
top employer is given by
H1 o (1 — 8) H1
Hi{+ L - H; +¢H,

By pointwise maximization of equation (7) we get the following

(1—u)sp

2(sp,—u
le/(b )

(1-u)(1—¢e)sp ‘u d]/l
2(sp—u(1—¢))

_ (1—u)’sg 1 (1-¢)
-8 [(Sb—u)2 (s —u(l—¢))?
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For s; = 1 — ¢ to be a profitable deviation the expected ability of the added applicant must exceed
the reservation expected ability. To prove the theorem, it suffices to show that there is a constant

Ca such that C; < Gy < {=2At.
We can evaluate g;jgg& at ¢ = 0 using L'Hopital’s rule. This yields

—Hy+(1-e)LH,
Ho+ 4L H,

e=0

(1—u)?s3(1—¢)

and values of Hy and H; we get the following

(1 —u)s;

d
—Hy + (1 — E)*H1

de |, 4(sp—u)’
e (1= uPs3s, + )
d 1 1—u)si(sp+u

Ho+ —Hy| =2 b
0t g o 2 + 8(sp —u)3
Putting together, we get
—Hy+ (1—e)4iH _ 2(1—u)?s)
Hy+ 4 H, o A4(sp—u)d+ (1 —u)2s3(sp+ u)

Inverting the expression above, we get the following

1,ou 2 —w?
2 25 (1—u)s}

Taking the derivative with respect to s; yields

12(sp — u)? — (1 — u)?s?
2(1—u)?s}

2(sp—u)®
(1—u)?s}
in s, = 1 we get that the above expression is upper bounded by 1.8 asu > C; > 1/2.

*H1+(1*€)%H1 . . (1—5)H1 . . .
B > 0.55. By continuity of 47—~ in € and the intermediate

=0
value theorem we get that for small enough ¢ > 0 the expected ability of additional applicants

g;fzg; > 0.53 > 1/2. We establish the theorem by setting C, = 0.53 and C; = 0.51.

To finish the proof, we need to show that the equilibrium restriction on the support of o is

. . . 2u 1 u S . . .
The expression above is positive for s, > 137, thus 5 + 5 + is increasing in s;,. Plugging

This implies that

valid. For this, we will show that in equilibrium s, = 1 ¢ supp(0). In other wrds we show that
for small enough & > 0 the equilibrium strategy o, assigns zero probability to the set [1 —¢,1], i.e.
o ([1—¢1])=0.

Consider some s, € (1 — ¢, 1], by the point wise maximization of equation (7), we observe

that the bottom employer gets zero payoff against any s; < s,. Thus, we only need to show
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that the bottom employer has a profitable deviation by playing 1 — ¢ instead of s; against any
st > sp. Given some hiring standards s, € (1 —¢,1) and s; > s;, for small ¢ > 0, the point wise
maximization of equation (7) and binding obedience constraints yield the following payoff to the

bottom employer

1-—s
Up(0) = <vh+vz ; b) E | ol (1) |
b
(1—u)sysy

0] 2(sp,—usy)
=0y, — 7y 1+ ) / d
( ) ( sson—o)) Jorr 1
(1=u)sysy,

When —L < s, the term (1 + ) is positive. By differentiating [.* ™ u du with respect

Un =01 sp(on—71) b/2
to s, we see that the expression is decreasing in s;. Thus, when the bottom employer lowers

its standard from s;, to 1 — ¢, the certifier allocates additional mass of applicants to the bottom

employer. The deviation is profitable if and only if the expected ability of new applicants allocated

—v,
vp—0;”

to the bottom employer exceeds

Let Ny, My represent the mass of high and low ability applicants that are allocated to the
bottom employer given standards (s, s ), respectively. From point wise maximization of equation
(7) and binding obedience constraint, we get the following

(1—u)stsy
2(sp—usg)
No = d
00/2 pap

and .
My=—b
Sp

No

Similarly, for standards (s¢, 1 — €) let N1, M; be the additional mass of high and low ability appli-
cants that are allocated to the bottom employer, respectively.

(1—u)(1—¢)sy
sp/2 2((1—€)—usy)
N; = / dy + / . ud
g T S PO
and
No+ N; _1_¢

No + Mo+ N1 + M,

1—
— M= (— - ) Np+ ——N;
1—c¢ Sp 1—c¢

Thus, the expected ability of the additional mass of applicants added to the bottom employer is
given by
N1 . N1 (1 — €)Sh
Ny + My - (Sb +e— 1)N0 + s, Ny

Fix any s; € (1 —¢,1). To show that the bottom employer has a profitable deviation by playing

1 — ¢, it suffices to show that the right-hand side of the above expression is greater than

—0 f
or
Uh =71

all s; > s, and sufficiently small € > 0.

49



The expected ability of the additional applicants can be bounded below by some constant
0 < C' < 1and some small € > 0 if the following holds

Nl(l_g)sb > !
(sp+e—1)Np+s,N1 —

After rearranging, we get

(1—e—C)Ny >’ (1—1S_‘C’> No
b
3

Differentiating N; with respect to s; shows Nj is increasing in s; as ( 5 is decreasing in s.

Sp—USt)
(1—u)stsy

Differentiating Ny with respect s; shows that Ny is increasing in s; as (sp—tisy)

is increasing in s;. By
plugging in s; = s, for Ny and s; = 1 for Ny we get the following implication

(1-u)(1-¢)sp (1-u)sp

—e—us 1—¢ 2(sp,—u)
1—e—C /2“ v d >c/<1— )/ e d
( ) oy M2 5 ) ), PO

— (1—e—C)N; > (1—15_8) No
b

(1-u)sy
As fsj/sl{“) p dy is decreasing in s, the first inequality above holds for any constant 0.6 > C" > 0 if

the following stronger condition holds

(;au)(l—s)s)b 1—¢ (;(—]u)(l—i)
04—¢ / o d / (1— — ) / “udu| >
( ) (1—¢)/2 e [ Sp (1—¢)/2 Hap

Notice that both the numerator and the denominator of the expression on the left-hand side tend to

zero as s, — 1 — €. Taking the derivative with respect to s;, of the numerator and the denominator

of the fraction on the left-hand side of the inequality above.

(1—u)(1—¢)sp (1 _ 1/[)2(1 _ 8)35b

a 2(1—e—usp) . .
a—sb(OA €) /(18)/2 pdu = (04—¢) 51— —usy)?

and
(1—u)(1—¢)

] 1—c¢ e (1—¢) < 1—u )2
(1= duy — 1
9sp < Sp ) /(1—s)/2 Hen 8s§ l—e—u

The derivative of the numerator is increasing in s, and the derivative of the denominator is de-

creasing in s;,. This implies the following inequalities

(1—u)(1—¢)sp

a 2(1—e—usy) 1-— S
— (04— / Copdp > (04 —¢) ——
asb( 8) (1—8)/2 :u l’l — ( 8)4(1 _ u)

) 1—¢ (;@li)s(:? (1—¢) 1—u \?
— (1= / du < -1
sy, ( Sp ) (1—¢)/2 HAR=""g (1—£—u)
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By L'Hopital’s rule and the two inequalities above, we get the following
(;(—lum—s)s)b
04—2) [, )" p 2004 —e)(1—e—u)?

sp—l—¢ - Gl — (1—u)(2—e—2u)e
(115 JuZeys wa

>0

The right-hand side blows up for ¢ close to zero. Thus, the necessary inequality, (1 —e — C')N; >
C’ (1 — 15—_;) Np, holds for some 0.6 > C" > C; = 0.53 when ¢ is small enough. This establishes

the required restriction on the support of 03, in equilibrium, and concludes the proof. O

Remark. The argument in proof of Theorem 2 can be extended to show a slightly stronger claim

that in equilibrium s; = 1 ¢ supp(cz). I do not pursue this in the interest of brevity.
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