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Abstract

This paper develops a theory of employer competition over hiring standards in labor markets
where employers rely on third-party certification to screen applicants. A revenue-maximizing
certifier sells tests to an applicant, who possesses imperfect private information about his abil-
ity and seeks to persuade employers to offer him employment. The certifier faces a joint screen-
ing and information design problem in designing a test allocation. The distortions from screen-
ing reduce the overall informativeness of the test allocation, steering the applicant supply to-
wards less selective employers. This incentivizes the more selective employers to lower their
standards, intensifying employer competition.
KEYWORDS: Monopoly Certification, Information Acquisition, Mechanism Design, Commu-
nication Game, Adverse Selection, Labor Markets
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1 Introduction

Labor markets are subject to information asymmetries as applicants generally know more about

their skills than potential employers. This asymmetry can lead to market failure if the applicant

cannot credibly signal his private information and if the expected ability of the applicant is low,

as in Akerlof (1970). An institutional response to market failure is third-party certification. The

certifier allows the informed applicant to signal information to uninformed employers (decision

makers). The certifier sells tests to the applicant, whose outcome may depend on the applicant’s
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underlying ability. The test outcome informs the employers about the applicant’s ability, alleviat-

ing some of the asymmetry.

Physicians, financial advisers, teachers, lawyers, and other professionals are required to take

standardized tests. Some other examples of such tests include online skill certification through

labor market platforms like Freelancer.com and talent assessment firms like ExpertRating. Em-

ployers often screen applicants through an established minimum hiring standard.1 These range

from pass/fail requirements, such as the Uniform Bar Exam for prospective lawyers, to raw score

requirements, as with the USMLE (United States Medical Licensing Examination) for hospital res-

idency programs. In entry-level professions, where wages are standardized, employers compete

in their selectivity to attract applicants. More sought-after employers can aggressively screen ap-

plicants by having higher hiring standards.

The institutions responsible for administering these tests face an incentive problem in allocat-

ing tests to privately informed applicants. Rent-extraction by the certifier can lead to distortions in

test allocation, which feeds back into the employers’ decisions. To parse the effect of the certifier’s

rent-extracting motive on the test allocation and on the subsequent employer-applicant interac-

tion, I abstract away from institutional details and consider a revenue-maximizing certifier that

can flexibly design and price information through menu pricing of tests.2

In that respect, this paper connects two elements that are typically studied in isolation: the

market structure for allocating tests to the applicant and the downstream employer-applicant in-

teraction. This provides new theoretical insights about the connection between allocative effi-

ciency in the certifier-applicant market and the nature of competition between employers. In par-

ticular, the distortions from second-degree price discrimination by the certifier reduce the overall

informativeness of the test allocation.3 This tends to increase the supply of applicants to less se-

lective employers, which incentivizes the more selective employers to lower their hiring standards.

Rent-extraction by the certifier coarsens the overall information conveyed by the test alloca-

tion to the employers, leading to a lower supply of high-credential applicants and consequently

hindering employers from aggressively screening applicants.

Certification and Standards: The certifier can be viewed as a two-sided supplier. The certifier

sells tests to a privately informed applicant. The certifier ”indirectly supplies” certified applicants

1Hiring standard represents the minimal expected ability of an applicant that an employer is willing to hire.
2Instances of such rent-extracting certification are tiered/nested testing structures in licensing finance professionals

and for-profit talent assessment firms like ExpertRating or TestGorilla.
3Lizzeri (1999), Kartik et al. (2021) show monopolistic certification, without screening, has an informativeness-reducing

effect. I expand on this insight by showing that second-degree price discrimination by the certifier further reduces
informativeness. The certifier increases allocation to less selective employers, allowing it to pool more low-ability
applicants and thus reducing information rents.
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to employers.4 The certifier can utilize menus of tests to (second-degree) price discriminate the

privately informed applicant. An employer makes the hiring decision based on the applicant’s

testing outcome and the menu of testing options available to the applicant. Tests contain hard

information, as the outcomes depend on the applicant’s underlying ability. Tests also contain soft

information owing to the applicant’s self-selection into different testing options made available by

the certifier.

Employers can set high standards to drive out lower ability applicants when testing is suffi-

ciently informative and costly. Although a convenient screening tool, an excessively high hiring

standard can be counterproductive when employers compete for a limited pool of applicants. A

competing employer might be able to poach potential high ability applicants by undercutting an

employer with stricter standards. These considerations highlight the strategic role of hiring stan-

dards in addition to the aforementioned screening role.

Another strategic aspect of hiring standards is their ability to influence the tests designed by

the certifier. As the applicant’s willingness to pay for a test depends on the employers’ hiring

decisions, the hiring standards also affect the demand for certification tests.5 This way, employ-

ers’ hiring standards and the test allocation are jointly determined in an equilibrium. Due to this

feedback, inefficiencies in test allocation can lead to unexpected consequences for employer com-

petition.

Modeling Preliminaries: I consider a monopolistic certifier (test designer), an applicant who

is partially and privately informed about his ability, and two employers that demand certified

applicants and are differentiated by their reputation.6,7

The model abstracts away from a wage-setting mechanism to focus on certification’s impact

on employer competition. Such considerations also have practical merit; entry-level workers or

workers in regulated professions face similar wages across employers, but they might prefer some

employers over others due to wage-independent aspects like job mobility or workplace environ-

ment.8

4An alternate setting could allow the certifier to charge a price to the employers for revealing an applicant’s test
outcome. In this case, the certifier can be viewed as a direct supplier to the employer. I comment on this in section 7.2.

5Information is valuable only through the decisions it induces.
6Many examples of professional certification, including the ones alluded to above, involve third-party certification

that is not necessarily monopolistic. Yet the monopolistic certification is an economically relevant benchmark, and
insights from the analysis are useful for other settings as well.

7Restricting employers to a duopoly is for expositional ease; the results and techniques readily generalize to more
employers.

8In section 7.1, I present an extension with wages. The main insight there is a negative result. If the certifier can flex-
ibly design and price information (tests), then vertical differentiation of employers alone does not lead to meaningful
wage competition.
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I model imperfect employer competition through a vertically differentiated duoposony. I con-

sider two employers that differ in their utility to the applicant upon being hired. I call them the

top employer and the bottom employer. The utility from joining the top employer is greater than

that from the bottom employer, and this is the same across all applicants. Employers rely on test

outcomes to assess the ability of a potential applicant. Both employers have the same value for an

applicant of a given ability; employers have a higher utility for higher ability applicants.

To focus on employer competition, I assume employers have greater bargaining power than

the certifier. In particular, employers can commit to a hiring standard rather than choosing their

standards in response to the mechanism designed by the certifier. Employers affect the demand

for certified applicants by committing to hiring standards.

The applicant is partially privately informed about his ability. I refer to the applicant’s belief

about his ability is his type. As test outcomes depend on ability, the applicant’s value for any

given test varies with the belief about his ability. In particular, the applicant’s type determines his

willingness to pay for a test.

The employers and the certifier do not observe the applicant’s type (and ability), and have

a common prior F. I assume that in the absence of the certifier, there is a market failure, as the

applicant is always left unemployed. In particular, I assume that the prior expected ability of the

applicant is below the minimum expected ability of the applicant that the employers are willing to

hire. This makes the certifier’s ability to generate hard information (ability-contingent signaling)

central in preventing market failure.

Due to uncertainty about the applicant’s type, the certifier faces a screening problem when

selling tests to the applicant. Tests are multi-dimensional instruments, each comprising a collec-

tion of outcome distributions indexed by the applicant’s underlying ability.9 The variation in a

test’s value across different types of applicants depends on the variation in the test’s ability con-

tingent outcome distributions. I restrict attention to binary ability to simplify the analysis of the

screening problem faced by the certifier. The applicant is either high ability or low ability. The

applicant’s type is then captured by the probability he assigns to being high ability. Types are

single-dimensional, sidestepping intricacies associated with the design of selling mechanisms in

the presence of multi-dimensional type spaces.

Along with the screening problem above, the certifier faces an information design problem.

Tests are valuable to an applicant only if they persuade the employer to hire the applicant. Hiring

standards constrain the information a test must generate to persuade an employer. This restricts

the certifier’s ability to pool high and low ability applicants, thus constraining the surplus that

the certifier can generate. The certifier needs to trade off surplus generation and information rents

from screening friction, while conforming to hiring standards set by the employers.

9In economics and statistics literature such tests are often referred to as Blackwell (or statistical) experiments.
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The interaction of the screening and information design problems results in inefficiencies that

are characteristic of certification markets. The certifier reduces the informativeness of tests by

pooling low ability applicants with high ablity applicants to extract more surplus from the appli-

cant. As the certification mechanism and hiring standards are equilibrium objects, these ineffi-

ciencies spill over onto the employers’ decisions.

Results: In the model, screening frictions faced by the certifier lead to two distortions relative

to a benchmark where the certifier observes the applicant’s type at the time of contracting. The

benchmark captures the information design part of the certifier’s problem (see section 4).

The first distortion is exclusion; there is an increase in the chance that the applicant is left unem-

ployed. When facing a privately informed applicant, the certifier resorts to second-degree price

discrimination. This involves offering a menu of different testing options at varying prices. The

optimal selling mechanism for tests leads to exclusion whenever the expected ability of the ap-

plicants is low enough. In the presence of screening frictions, the designer does not sell to some

types, increasing unemployment.10 For exclusion to occur, it’s crucial that the certifier needs to

generate informative tests to induce employment. There is an excessive reduction in labor supply,

relative to the benchmark, indicating that the inefficiency in test allocation amplifies certification’s

role as a barrier to entry for the applicant.

The second distortion is reduction in informativeness; the certifier distorts the test towards allo-

cating the applicant to less selective employers with a greater probability. Less selective employers

set lower hiring standards and are willing to hire applicants with lower expected ability. Pooling

a larger quantity of low ability applicants helps reduce overall information rents, as it reduces the

difference (heterogeneity) in test outcomes for high and low ability applicants. The certifier bene-

fits from a greater mass of low ability applicants not only through changes in the applicant’s gross

utility but also through reductions in information rents conceded to the applicant. This informativ-
ness reducing effect of second-degree price discrimination is highlighted by Theorem 1 in section

5.2. Theorem 1 shows that whenever the top employer sets a higher standard than the bottom em-

ployer, the certifier allocates the applicant to the bottom employer with positive probability (and

sometimes allocates the applicant only to the bottom employer). This contrasts with the bench-

mark, where the certifier allocates the applicant only to the top employer against a subset of these

standards.

Although tests that allocate the applicant to the top employer fetch higher prices, they also

raise information rents disproportionately when the top employer sets a higher standard than the

bottom employer. Higher standards result in a smaller quantity of low ability applicants, leading

10This distortion is reminiscent of exclusion results from the literature on non-linear pricing, see Armstrong (1996)
for example.
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to greater heterogeneity in willingness to pay across applicant types and thus greater information

rents. When the bottom employer sets a low enough standard, the certifier might prefer allocating

the applicant to the bottom employer, even when it reduces the applicant’s gross utility. This high-

lights an increase in the bottom employer’s market power vis-à-vis the top employer, apparent in

the relative selectivity of the employers. Compared to the benchmark, the gap between the hiring

standards set by the top and the bottom employers becomes narrower, leading to constriction of
standards.

I demonstrate this effect on employer competition by Theorem 2. In the benchmark allocation,

if the bottom employer is weak (the utility that the applicant gets from joining the employer is

low enough), then the equilibrium certification mechanism and top employer’s hiring standards

are independent of the bottom employer’s choice. In contrast, when the certifier has to screen

applicants, the equilibrium certification mechanism and top employer’s standards might depend

on the (weak) bottom employer’s choice. Due to the informativeness reducing effect of second-degree

price discrimination, the certifier might allocate applicants even to a weak bottom employer. This

incentivizes the top employer to lower its standards. Theorem 2 shows that for some parameter

values, the top employer never sets a standard of 1.11 For the same parameter values, the unique

equilibrium of the benchmark requires the top employer to set a standard of 1.

Relative to the benchmark, screening friction faced by the certifier results in test allocation that

generates a lower gross surplus in the certifier-applicant (upstream) market. Both exclusion and

reduction in informativeness hurt the top employer, but the bottom employer might benefit from

the latter. To summarize, inefficiency in test provision leads to an overall loss of surplus in the

market, but remarkably, competition among the employers intensifies.

The results of this paper identify the role of monopolistic certification in shaping employer

competition by excessively reducing the supply of high-credential applicants through reducing

the informativeness of test allocation.

2 Literature

Theoretical and empirical literature on certification is vast; an early contribution by Viscusi (1978)

points out the role of certification in preventing market breakdown. In a seminal paper, Lizzeri

(1999) explores the role of a monopolistic certifier who can sell information to privately informed

parties. But the designer in Lizzeri (1999) uses a take-it-or-leave-it offer instead of a menu of tests

and prices. Lizzeri (1999) assumes that markets do not unravel when the certifier is absent; the

prior expected ability of the applicant is above the employers’ reservation. Thus, restricting the

11If an employer sets a standard of 1, then the employer only accepts an applicant if it is certain that the applicant is
of high ability.
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certifier to a single take-it-or-leave-it offer is without loss as the certifier offers an uninformative

test sold to all types and extracts all the surplus from the applicants. Kartik et al. (2021) generalizes

the findings of Lizzeri (1999) to partially informed agents; they do not allow price discrimination

by the certifier. A key insight in these papers is that a monopolistic certifier favors less informative

tests. I extend the insight of these papers by showing that second-degree price discrimination, by

the certifier, amplifies the economic force favoring less information.

In an influential paper Leland (1979) develops a theory of professional licensing in an environ-

ment where applicants invest in their ability. He shows that licensing, in the form of minimum

ability standards, can prevent market failure. Leland (1979) does not consider certification or an

information intermediary in his model; the choice and enforcement of standards is exogenous.

A well-known consequence of certification is its function as a barrier to entry (Stigler (1971)).

Certification requirements create restrictions on the supply of applicants and potentially drive up

competition between employers. I argue that inefficiency in test allocation, from certifier screen-

ing the applicant, not only further restricts the supply of applicants but also reduces the overall

informativeness of the tests.

Dranove and Jin (2010) surveys, among other aspects of certification, the economic debate

about certification’s role in quality assurance versus its role as a barrier to entry. Naidu and Posner

(2022) surveys the challenges present in regulating employer competition. Azar and Marinescu

(2024) surveys recent developments in the theory of employer competition. They focus on three

modeling approaches for employer competition – oligopoly, job differentiation, and search fric-

tions. I study an oligopolistic labor market to address a fundamentally different question, focus-

ing on the quality assurance role. How do distortions from screening affect employer competition

when the certifier flexibly designs and prices information?

Following the works of Rayo and Segal (2010) and Kamenica and Gentzkow (2011), there has

been an explosion of interest in studying information provision involving general information

structures. This has led to new insights about markets and methodological advances Roesler and

Szentes (2017), Bergemann et al. (2018), Kleiner et al. (2021), Dworczak and Kolotilin (2024). In a

recent survey Bergemann and Ottaviani (2021) describes various market mechanisms for informa-

tion provision. Using techniques from the information design literature, there have been recent

developments in the study of certification, where the certifier produces hard information. Ali et

al. (2020) has considered robust provision of hard information when the agent does not hold pri-

vate information. Asseyer and Weksler (2024) also considers the provision of hard information to

uninformed agent; they focus on a common value environment.

Combining mechanism design and information design problems has led to many interest-

ing insights in various applications. For example, Calzolari and Pavan (2006), Dworczak (2020)

have studied sequential agency problems in which upstream designers reveal strategic informa-
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tion to downstream principals. Bergemann and Pesendorfer (2007), Bergemann et al. (2022) have

considered joint design of product allocation and information about the product. Frankel (2021)

considers a delegation model in a labor market environment where employers get hard and soft

information about applicants. The important difference is that the employer can observe the appli-

cant’s hard information, and the soft information is provided by a third agent (manager). Corrao

(2023) has studied screening by a monopolistic certifier, but restricts attention to soft information.

There has been some recent interest and progress in studying certification intermediaries that

generate new information and interact with partially informed buyers Weksler and Zik (2025),

Celik and Strausz (2025), Mäkimattila et al. (2025), Chopra and Ely (2025). In Weksler and Zik

(2025), the agents seeking certification are privately and partially informed, but their choice of

tests is publicly observable. Celik and Strausz (2025) focuses on the role of soft and hard in-

formation (they call it screening and acquisition) in certification mechanisms for a buyer seller

framework. Mäkimattila et al. (2025) focuses on monopolistic certification, similar to my single

employer benchmark, and contrasts it with the setting in which the applicant’s test choice is ob-

servable. In a related single employer model Ely (2025) studies optimal test allocation when the

applicant can credibly reveal his private type to the employer (decision maker).

The closest paper to this one is Chopra and Ely (2025), which develops analytical tools for the

mechanism and information design problems faced by the certifier in various contexts. Although

both Mäkimattila et al. (2025) and Chopra and Ely (2025) describe the single employer analogue

of the intermediaries problem (see section 6.1), neither considers the equilibrium interaction of the

information receivers’ commitment and certification mechanism.

3 Model

There are four players: an applicant, a top employer, a bottom employer, and a certifier (test

designer). The applicant has ability θ ∈ {h, l}, unknown to all. The applicant has partial private

information about his ability represented by his type, µ ∈ [0, 1]. Only the applicant knows his

prior type. The employers and the certifier are initially uninformed about the applicant’s ability θ

and his type µ, and have a common prior F ∈ ∆([0, 1]) with full support and a continuous pdf f .

Each employer receives a payoff of vh > 0 from employing a high ability applicant and a

payoff of vl < 0 from employing a low ability applicant. The value vθ can be understood as

the productivity of an applicant with ability θ. The expression νvh + (1 − ν)vl is the expected

productivity (value), to the employers, of an applicant with expected ability ν. The payoff from

employing someone with expected ability ν is νvh + (1 − ν)vl . Thus, the expected value of an

applicant to the employers is increasing in the applicant’s type. The employers are indifferent

between hiring or rejecting an applicant with type µ = −vl
vh−vl

. The cutoff −vl
vh−vl

is the employers’
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reservation expected ability of the applicant.

I will assume that 1 > −vl
vh−vl

> EF[ µ ]. This makes the role of certifier more interesting, as

without the certifier, there is no employment. The assumption is to emphasize the certifier’s role

in information generation, in contrast to the gatekeeping role of certification. If EF[µ] <
−vl

vh−vl
then

the certifier enables credible signaling which prevents market failure. The certifier is a gatekeeper

when EF[µ] ≥ −vl
vh−vl

. In this case, markets do not unravel without the certifier, as the applicant’s

prior expected value to the employers is positive.

Imperfect competition between employers is modeled through vertical differentiation. The

applicant gets a utility of 1 from being hired by the top employer, a utility of 0 < u < 1 for the

bottom employer, and 0 if left unemployed. The differentiation captures the applicant’s wage

independent consideration, like the prestige (reputation) of the employer. The applicant can only

be employed by one employer.

The certifier facilitates signaling through selling tests to the applicant. The certifier seeks to

maximize its revenue from selling tests to the applicant. A test is defined by a set of test outcomes

ME and for each θ, a distribution ρθ ∈ ∆(ME). When the applicant takes a test, the outcomes are

drawn from ρθ when the applicant’s ability is θ. The test outcome m ∈ ME is revealed publicly.

The certifier sets a (certification) mechanism Φ, which consists of a set of reports M and a function

from elements of M to pairs of payments and tests. To allow for voluntary participation by the

applicant, I require that the ”empty message” is always available to the applicant at no cost.

Timing

1. The top and the bottom employers simultaneously and publicly commit to hiring standards

s = (st, sb) ∈ [0, 1]2.

2. The certifier publicly announces a certification mechanism Φ.

3. The applicant chooses a report in M and makes payment to the certifier as prescribed by Φ.

4. Employers observe the certification mechanism and the test outcome m ∈ ME.12

5. The applicant chooses an employer among those whose posterior belief based on 4. exceeds

their hiring standards, and remains unemployed otherwise.

The solution concept is Perfect Bayesian Equilibrium, henceforth referred to as just equilibrium.

12I require that all employees can observe the test outcome. We can also allow the certifier to reveal test outcomes
to subsets of employers. The certifier does not gain from this extra contractual power, as on-path payoffs in revenue-
maximizing equilibria remain unchanged. See obedience constraints in section 5 for details.
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Employers commit to the expected ability of an applicant that they are willing to accept (hiring

standards). This commitment assumption helps focus on employer competition, avoiding consid-

erations related to inter-market competition between the certifier and the employers.13

In a direct mechanism M = [0, 1] and ME = ∆(A). The space of test outcomes (or recommen-

dations) is A = {at, ab, r} := {hire by top employer, hire by bottom employer, reject}. In a direct

mechanism, the test results specify whether to reject or hire the applicant. Moreover, the recom-

mendation to hire is employer-specific. The applicant reports his type µ ∈ [0, 1] and in response

the certifier charges the applicant a price φ(µ) and uses ρθ(µ) to announce a recommendation

a ∈ A.

A direct mechanism is obedient if it is optimal for each employer to offer employment if and

only if recommended to do so. More precisely, obedience entails that the employers’ beliefs are

such that14

E[ µ | at ] ≥ st > E[ µ | ab ] ≥ sb > E[ µ | r ] (1)

As test outcomes are public, obedience requires that the applicant follow the certifier’s recom-

mendation. The strict inequalities in (1) follow as an applicant (strictly) prefers the top employer

over the bottom employer, and the bottom employer over rejection.

Let ρt
θ(µ) := ρθ(µ)(at) and ρb

θ(µ) := ρθ(µ)(ab), these represent the probability of being hired by

the top and bottom employers respectively conditional on ability θ for type µ’s allocation. For a

direct mechanism (ρ, φ), we can represent a test allocation as ρ = (ρt
h, ρb

h, ρt
l , ρb

l ).

A direct mechanism yields gross utility for type µ equal to V(µ) = µ
(
ρt

h(µ) + uρb
h(µ)

)
+ (1 −

µ)
(
ρt

l(µ) + uρb
l (µ)

)
. Define the indirect utility function of a direct mechanism (ρ, φ) by

U (µ) := V(µ)− φ(µ)

When type µ misreports ν ̸= µ he earns gross utility given by

V(µ, ν) = µ
(

ρt
h(ν) + uρb

h(ν)
)
+ (1 − µ)

(
ρt

l(ν) + uρb
l (ν)

)
An direct mechanism is incentive compatible if for every µ, ν

U (µ) ≥ V(µ, ν)− φ(ν).

13Without the commitment assumption, the certifier can manipulate the applicant supply such that the expected abil-
ity of the applicant, conditional on being hired, is as low as possible

(
= −vl

vh−vl

)
. Sequential rationality of the employer

then requires the employer to hire the applicant.
14For an incentive compatible direct mechanism ( φ, ρ ), whenever

∫ 1
0 µρh(µ)(a) dF(µ)+

∫ 1
0 (1−µ)ρl(µ)(a) dF(µ) > 0

Bayes rule implies

E[µ|a] :=

∫ 1
0 µρh(µ)(a) dF(µ)∫ 1

0 µρh(µ)(a) dF(µ) +
∫ 1

0 (1 − µ)ρl(µ)(a) dF(µ)

When
∫ 1

0 µρh(µ)(a) dF(µ) +
∫ 1

0 (1 − µ)ρl(µ)(a) dF(µ) = 0, the action a is never recommended and can be removed
from (1).
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A direct mechanism is individually rational if U (µ) ≥ 0 for all µ.

Given hiring standards (st, sb), the intermediary seeks to maximize revenue generated by sell-

ing tests to applicants. By the revelation principle ( Myerson (1986), Forges (1986) ), it suffices to

restrict attention to direct, obedient, and incentive compatible mechanisms (ρ, φ) with full partic-

ipation. Thus, the certifier’s objective is to maximize revenue

Π =
∫ 1

0
φ(µ)dF(µ)

among obedient, incentive compatible, individually rational direct mechanisms.

Moreover, by the definition of indirect utility for an obedient, incentive compatible, individually

rational direct mechanism, we have the following

Π =
∫ 1

0
[ V(µ)−U (µ) ] dF(µ)

Given such a mechanism with test allocation ρ, the payoff to the employers is

Ut(ρ ) :=
∫ 1

0
[ µ vh ρt

h(µ) + (1 − µ) vl ρt
l(µ) ] dF(µ)

Ub(ρ) :=
∫ 1

0
[ µ vh ρb

h(µ) + (1 − µ) vl ρb
l (µ) ] dF(µ)

When the choice of test allocation is unambiguous, I will drop dependence on ρ from the notation

of employer payoffs.

4 No Screening Benchmark

I will first present the benchmark for the certifier’s problem without screening frictions. In this

section, the applicant can not misreport his type in a direct mechanism, and thus, all test alloca-

tions are incentive compatible. As the certifier faces no incentive compatibility restrictions, it can

extract all surplus generated. This allocation is clearly individually rational. We are only left with

obedience constraints, which constitute the certifier’s information design problem. In particular,

after observing the hiring standards (st, sb), the optimal mechanism (ρ, φ) solves

max
ρ

∫ 1

0
V(µ)dF(µ)

Such that ρ satisfies (1).

Thus, the design of optimal tests is as if the applicant can commit ex-ante to a costless type-

dependent test. I refer to this information design problem as the efficient benchmark, and the

distortions described in section 6 are relative to this benchmark. Here, the notion of efficiency is

for the applicant-certifier market.
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Proposition 1. The set of equilibrium hiring standards (in pure strategy) is

E =


{(

1
u

−vl
vh−vl

, −vl
vh−vl

)}
if u > −vl

vh−vl

{(st, sb) = (1, x) | x ∈ [u, 1]} otherwise

Proof. See appendix A.1

Remark. In the absence of a competing employer, the top employer would always commit to

accepting an applicant only if it is certain that the applicant’s ability is θ = h. In response, the

certifier chooses a fully revealing test for all types. This gives the employer the highest possible

surplus as vh > 0 > vl . When there is a competing employer, the top employer faces the risk

of losing out on potentially high ability applicants to the bottom employer. Thus, competition

restricts the top employer’s selectivity.

The certifier maximizes the applicant’s gross utility subject to obedience (1). Allocating an

applicant to the top employer yields a higher utility, but it comes at the cost of pooling fewer

low ability applicants. When the top employer sets a higher standard than the bottom employer,

the certifier might find it beneficial to allocate applicants to the bottom employer. If sb is suffi-

ciently small, the lower marginal value of allocating to the bottom employer is overshadowed by

the greater mass of applicants that the bottom employer accepts. The interplay between these

forces determines what tests are offered. The obedience constraints must hold with equality as

st, sb ≥ −vl
vh−vl

> EF[µ]. If the top (bottom) employer hires with positive probability, then the

expected ability of the hired applicant equals the standard st (sb). If an employer’s obedience

constraint is slack, then the certifier can pool in more low ability applicants to that employer’s rec-

ommendation, increasing the applicant’s gross utility. The trade-off described above can be seen

by substituting the obedience constraints in the certifier’s objective.

E
[

µ

st
ρt

h(µ) + u
µ

sb
ρb

h(µ)

]
The terms in front of ρt

h and ρb
h represent the sum of the direct value from test allocation conditional

on high ability and the indirect value from pooling additional low ability applicants. A simple

pointwise maximization scheme then gives the solution. If ust < sb, the certifier only allocates

applicants to the top employer. If ust > sb, the certifier only allocates the applicant to the bottom

employer.

When the applicants’ utility from joining the bottom employer is low enough, u < −vl
vh−vl

, the

certifier always chooses to allocate the applicant to the top employer. Anticipating this, the top

employer chooses st = 1.

If −vl
vh−vl

< u, then the top employer can not set st = 1. Setting a high threshold gives the bottom

employer incentive to undercut the top employer by choosing sb = u(1− ε). More generally, given

12



some st the bottom employer can undercut the top employer whenever there exists some ε > 0

such that u(1 − ε)st >
−vl

vh−vl
. In equilibrium, the employers must not have an incentive to lower

their standards to undercut the opponent. Moreover, if ust < sb, then the top employer has a

profitable deviation st =
sb
u − ε for some ε > 0. Thus, the employer must choose sb = ust =

−vl
vh−vl

.

Importantly, in equilibrium, the designer is indifferent between all the employers that hire with

positive probability. By the same argument, only the top employer hires with positive probability

in equilibrium.

Remark. The bottom employer is weak if the applicant’s utility from being hired by the bottom

employer is below the employer’s reservation expected ability, u < −vl
vh−vl

. An important observa-

tion from Proposition 1 is that whenever the bottom employer is weak, the equilibrium certification

mechanism and the top employer’s standards are independent of the bottom employer’s (sequen-

tially rational) actions. This can be interpreted as a ”no-entry” equilibrium, where the bottom

employer is sufficiently undesirable (to the applicant) relative to the top employer. The top em-

ployer does not lower its standards, as the bottom employer is not able to poach applicants away

from the top employer.

Preview of Results: I prove two main results that demonstrate how incentive constraints for the

certifier’s problem distort the (benchmark) allocation and its effect on employer competition.

In the benchmark allocation, the certifier allocates the applicant to the bottom employer with

positive probability only if ust ≥ sb. The first result (Theorem 1 in section 5.2) highlights the

certifier’s tendency to increase allocation to less selective firms as this reduces information rents

(informativeness-reducing effect). Roughly speaking, Theorem 1 states that, under a regularity con-

dition on the prior F, the certifier allocates the application to the bottom employer with positive

probability even when ust < sb. Moreover, for sb − ust sufficiently small (but positive), there

is a reversal in the certifier’s allocation relative to the benchmark; the certifier only allocates the

applicant to the bottom employer.

The second result (Theorem 2 in section 6.2 ) demonstrates how the distortions from the screen-

ing frictions faced by the certifier affect the equilibrium determination of hiring standards and its

effect on employer competition. In the benchmark allocation, weak bottom employer
(

u < −vl
vh−vl

)
does not affect the equilibrium certification mechanism and top employer’s hiring standards. But

due to the informativeness-reducing effect, the top employer is compelled to reduce its standards

even against a weak bottom employer. More precisely, for uniformly distributed F, if the employ-

ers’ reservation expected ability −vl
vh−vl

is low enough, then there is no equilibrium in which the top

employer sets the highest standard (st = 1) even against a weak bottom employer.

13



5 Certification Design with Privately Informed Applicant

I begin by describing how incentive compatibility affects the design of the certification mechanism.

Consider some arbitrary but fixed hiring standard (st, sb) such that st > sb ≥ −vl
vh−vl

.

Incentive Compatibility: Recall that a direct mechanism is incentive compatible if for every µ, ν

U (µ) ≥ V(µ, ν)− φ(ν).

An important quantity in the analysis of incentive compatibility is the slope of the indirect utility.

Consider a function K defined by the difference in the applicant’s utility conditional on θ = h and

the applicant’s expected utility conditional on θ = l.

K(µ) :=
(

ρt
h(µ) + uρb

h(µ)
)

︸ ︷︷ ︸
utility conditional on θ=h

−
(

ρt
l(µ) + uρb

l (µ)
)

︸ ︷︷ ︸
utility conditional on θ=l

As V(µ, ν) is linear in the applicant’s type µ, by Rochet (1987) and Chopra and Ely (2025), a test

allocation ρ is incentive compatible for some price φ if and only the following monotonicity con-

dition holds

K(µ) =
(

ρt
h(µ) + uρb

h(µ)
)
−
(

ρt
l(µ) + uρb

l (µ)
)

is non-decreasing

Moreover, the function K describes the slope of the applicant’s indirect utility. In particular, U is

convex and hence absolutely continuous. The indirect utility has the following integral represen-

tation

U (µ) = U (0) +
∫ µ

0
K(ν) dν

Importantly, a test allocation ρ with lower variation in θ contingent outcomes results in a flatter

indirect utility.

Obedience: Recall that the obedience constraint is given by

E[ µ | at ] ≥ st > E[ µ | ab ] ≥ sb > E[ µ | r ]

Revenue maximization requires that the top employer’s obedience constraint E[ µ | at ] ≥ st holds

with equality. Assume for contradiction that ρ generates constraint E[ µ | at ] > st, then the cer-

tifier can improve its revenue by offering a lottery over test allocations. This lottery allocates all

types with a small probability α, regardless of θ, to the top employer, and with probability (1 − α)

the improving lottery allocates according to ρ. This preserves obedience and incentive compat-

ibility, but generates a greater applicant gross utility without increasing information rents, thus

increasing revenue. I present the argument for the binding bottom employer obedience constraint

14



in appendix A.2. The argument follows by splitting a small mass of applicants allocated to the bot-

tom employer, conditional on θ = h, and allocating them between the top employer and rejection.

Obedience constraints for a revenue maximizing mechanism can be expressed as follows15

E[ µ | at ] = st > E[ µ | ab ] = sb > E[ µ | r ]

The equality of obedience constraints is similar to the informed certifier benchmark (section 4),

but the argument used to perturb suboptimal mechanisms explicitly accounts for the application’s

incentive to misreport his type (incentive compatibility). From the definition of E [µ|a], obedience

constraint can be expressed by linear equalities, whenever st > sb ≥ EF[µ]. 16

(1 − st)
∫ 1

0
µρt

h(µ) dF(µ)− st

∫
(1 − µ)ρt

l(µ) dF(µ) = 0

(1 − sb)
∫ 1

0
µρb

h(µ) dF(µ)− sb

∫
(1 − µ)ρb

l (µ) dF(µ) = 0

Individual Rationality: Any incentive compatible and obedient direct mechanism is revenue

maximizing only if the individual rationality constraint is binding for some type µ0. More pre-

cisely, there exists a type µ0 such that U (µ0) = 0. Let µ0 be the smallest type with binding individ-

ual rationality. The indirect utility is then given by

U (µ) =

−
∫ µ0

µ K(ν)dν, if µ ≤ µ0∫ µ
µ0

K(ν)dν, if µ ≥ µ0

The revenue can then be expressed as the difference between gross and indirect utility

Π =
∫ 1

0
[ V(µ)−U (µ) ] dF(µ)

=
∫ µ0

0

{
V(µ) +

∫ µ0

µ
K(ν)dν

}
f (µ)dµ +

∫ 1

µ0

{
V(µ)−

∫ µ

µ0

K(ν)dν

}
f (µ)dµ

As U (µ0) = 0, the slope of the indirect utility of all types lower than µ0 is negative. Thus, the

expression above increases when K increases for types µ ≤ µ0. Moreover, for µ < µ0 either

ρt
l(µ) > ρt

h(µ) or ρb
l (µ) > ρb

h(µ). Marginally increasing ρt
h or ρb

h for types just below µ0 preserves

incentive compatibility, and increases the revenue. But increasing ρt
h is not always feasible as it

15The argument for binding obedience constraints is independent of whether the certifier announces test outcomes
publicly or not. Additionally, if st ≤ sb then in any revenue-maximizing mechanism ab is recommended with zero
probability. Thus, it is without loss to assume public test outcomes.

16The equalities imply that the expected ability of an applicant being recommended ab is sb < st, hence the appli-
cant does not deviate. As st, sb ≥ E[µ], the obedience constraint for recommendation r follows from the law of total
expectation.

15



might lead to a decrease in ρb
h and a possible violation of the obedience constraint (1). This happens

only if ρt
h(µ)+ ρb

h(µ) = 1, which along with a negative slope implies ρt
l(µ) > 0. Using this, Lemma

1 demonstrates how a simple perturbation can still be constructed to increase revenue.

Lemma 1. Let (ρ, φ) be an incentive compatible, obedient, and individually rational direct mechanism
with indirect utility U . The mechanism (ρ, φ) is revenue maximizing only if U (0) = 0.

Proof. See appendix A.3

Lemma 1 implies that the revenue maximizing incentive compatible and obedient mechanism

requires that the lowest type has a binding individual rationality constraint ( U (0) = 0 ). Impor-

tantly, this implies that the slope of the indirect utility is everywhere non-decreasing and positive.

Distortions Relative to the Benchmark: Using integration by parts, we can then express the

certifier’s revenue from an optimal incentive compatible and obedient mechanism in the familiar

virtual surplus representation, see Myerson (1981).

E

(ρt
h(µ) + uρb

h(µ))

(
µ − 1 − F(µ)

f (µ)

)
︸ ︷︷ ︸

high ability virtual value

+ E

(ρt
l(µ) + uρb

l (µ))

(
1 − µ +

1 − F(µ)
f (µ)

)
︸ ︷︷ ︸

low ability virtual value


The above expression reveals an interesting property of the certifier’s problem; under standard

monotone hazard rate conditions, see Myerson (1981), the high ability virtual value is increasing

and crosses 0 from below, while the low ability virtual value is positive and decreasing. From the

definition of K, we can express the objective as follows17

E
[
ρt

h(µ) + uρb
h(µ)

]
− E

[(
1 − µ +

1 − F(µ)
f (µ)

)
K(µ)

]
Plugging in the obedience constraint, which holds with equality, we can simplify the expression

for the applicant’s gross utility. We can simplify the objective to the following

E
[

µ

st
ρt

h(µ) + u
µ

sb
ρb

h(µ)

]
︸ ︷︷ ︸

Information design tradeoff

−E
[(

1 − F(µ)
f (µ)

)
K(µ)

]
︸ ︷︷ ︸

Distortion from screening

(2)

The first term in (2) captures the information design tradeoff, studied in section 4. The second

term is a distortionary term due to the certifier screening the applicant’s private information. No-

tice that the revenue generated by the optimal mechanism in the benchmark is greater than the

revenue generated when the certifier has to screen the applicant.

17To keep the notation simple, I do not explicitly index K by the test choice ρ.
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5.1 Certifier’s Optimization Problem

Solving the certifier’s primal problem involves aggregate linear constraints (in the form of obedi-

ence) and monotonicity constraints (for incentive compatibility). The formal optimization prob-

lem can be summarized as

max
ρ: [0,1]→∆(A)×∆(A)

E [V(µ)]− E
[

1 − F(µ)
f (µ)

K(µ)
]

(P)

subject to

(1 − st)
∫ 1

0
µρt

h(µ) dF(µ)− st

∫
(1 − µ)ρt

l(µ) dF(µ) ≥ 0 (Top Employer Obedience)

(1 − sb)
∫ 1

0
µρb

h(µ) dF(µ)− sb

∫
(1 − µ)ρb

l (µ) dF(µ) ≥ 0 (Bottom Employer Obedience)

K ≥ 0 (Individual Rationality)

K non -decreasing (Incentive Compatibility)

Relaxed Problem: Consider the relaxation of the primal problem (P) which does not involve the

monotonicity constraint for K.

max
ρ: [0,1]→∆(A)×∆(A)

E [V(µ)]− E
[

1 − F(µ)
f (µ)

K(µ)
]

(R)

subject to

(1 − st)
∫ 1

0
µρt

h(µ) dF(µ)− st

∫
(1 − µ)ρt

l(µ) dF(µ) ≥ 0

(1 − sb)
∫ 1

0
µρb

h(µ) dF(µ)− sb

∫
(1 − µ)ρb

l (µ) dF(µ) ≥ 0

K ≥ 0

In general, the solution to the relaxed problem (R) is not incentive compatible. To simplify the

analysis and in the interest of focusing on economic insights, I require the prior cdf F to obey the

following regularity assumption.

Assumption 1. The weighted inverse hazard ratio 1−F(µ)
(1−µ) f (µ) is non-increasing.18

Importantly, assumption 1 leads to the following key simplification:

18A CDF F satisfies assumption 1 if and only if there exists a non-increasing, positive function g : [0, 1] → R such
that

lim
x↑1

exp
(
−
∫ x

0

1
(1 − ν)g(ν)

dν

)
= 0 and F(µ) = 1 − exp

(
−
∫ µ

0

1
(1 − ν)g(ν)

dν

)
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Proposition 2. If assumption 1 holds, then there is a solution to the relaxed problem (R) that is also a
solution to the primal problem (P). Moreover under assumption 1, any solution to the primal problem (P)

is also a solution of the relaxed problem (R).

Proof. See appendix A.4

Remark. The proposition follows from noting that a solution to the relaxed problem (R) has non-

decreasing slope K whenever assumption 1 holds. To illustrate this, I will provide a simplified,

assuming that the optimal test takes finitely many values, sketch which captures the essence of

the more general argument in the appendix A.4.

Proposition 2 proof sketch: Fix some test allocation ρ. Consider two intervals I1 and I2 such that

I1 < I2 in the strong set order.19 Moreover, assume that ρ is constant on I1 and I2. Let the slope K
be constant on these intervals. Assume for contradiction that K(I1) > K(I2). As K ≥ 0, one of the

following holds

1. either ρt
l(I1) + uρb

l (I1) < ρt
l(I2) + uρb

l (I2)

2. or, ρt
h(I2) + uρb

h(I2) < ρt
h(I1) + uρb

h(I1)

I will show that under assumption 1, condition 1) can never happen in an optimal mechanism.

Proof for 2) is analogous (see appendix A.4). Consider subsets I′1 ⊂ I1 and I′2 ⊂ I2 such that∫
I′1
(1 − µ) dF(µ) =

∫
I′2
(1 − µ) dF(µ) > 0 (MC)

The main step here involves marginally changing the test allocation for types in intervals I′1 and

I′2. We shift the test allocation for types in interval I′1, conditional on θ = l, in the direction of the

allocation in interval I′2. Similarly, we shift allocation for types in I′2 in the direction of allocation

in I′1. The new test allocation is intended to flatten the indirect utility for lower types and increase

its steepness for higher types.

Assumption 1 implies that it is possible to construct a test, resulting from obedience-preserving

(and gross surplus preserving) shifts, with steeper indirect utility. As the inverse hazard rate is

decreasing, by assumption 1, the new allocation is a profitable deviation for the certifier. Roughly

A necessary condition for assumption 1 is the following Bounded Hazard Rate property

1 − F(µ)
f (µ)

≥ 1 − µ

This follows from limµ↑1
1−F(µ)

(1−µ) f (µ) = 1 and the fact that 1−F(µ)
(1−µ) f (µ) is non-increasing. In particular, the inverse hazard

rate is bounded below by a decreasing linear function.
19Let Y and Y′ be subsets of R. Set Y′ dominates Y in the strong set order (Y′ ≥SSO Y) if for any x′ in Y′ and x in Y,

we have max{x′, x} in Y′ and min{x′, x} in Y.
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speaking, the certifier benefits from pooling low ability applicants into the allocation for lower

types.

Formally, we can perturb ρl on the sets I′1 and I′2. Define, for j ∈ {t, b} and ε > 0, the following

perturbations

ρ̃
j
l(I′1) := (1 − ε)ρ

j
l(I1) + ερ

j
l(I2) and ρ̃

j
l(I′2) := (1 − ε)ρ

j
l(I2) + ερ

j
l(I1)

For equation (2), the choice above leaves the information design part of the revenue unchanged.

Thus, the change in revenue from the perturbation is given by the following

ε

(
(ρt

l(I2) + uρb
l (I2)− ρt

l(I1)− uρb
l (I1))

∫
I′1

(
1 − F(µ)

f (µ)

)
dF(µ)

)
+ ε

(
(ρt

l(I1) + uρb
l (I1)− ρt

l(I2)− uρb
l (I2))

∫
I′2

(
1 − F(µ)

f (µ)

)
dF(µ)

)
As ρt

l(I1) + uρb
l (I1) < ρt

l(I2) + uρb
l (I2), the change in revenue from the perturbation is positive if

the following holds ∫
I′1

(
1 − F(µ)

f (µ)

)
dF(µ)−

∫
I′2

(
1 − F(µ)

f (µ)

)
dF(µ) ≥ 0

Dividing and multiplying the integrands in the left-hand side of the above inequality by (1 − µ)

yields ∫
I′1

1 − F(µ)
(1 − µ) f (µ)

(1 − µ) dF(µ)−
∫

I′2

1 − F(µ)
(1 − µ) f (µ)

(1 − µ) dF(µ)

By assumption 1 and (MC) the above is bounded below by[
min
µ∈I′1

{
1 − F(µ)

(1 − µ) f (µ)

}
− max

µ∈I′2

{
1 − F(µ)

(1 − µ) f (µ)

}]
×
∫

I′1
(1 − µ) dF(µ) ≥ 0

The perturbation ρ̃ is obedient, implying ρ is not optimal.

From the argument above (and Appendix A.4), any solution to the relaxed problem (R) can be

rearranged to yield a payoff equivalent test allocation with non-decreasing slope K. The second

statement of Proposition 2 follows from noting that a solution to the relaxed problem with non-

decreasing slope is also a solution to the primal problem (P).

5.2 Increased Affinity to Less Selective Employers

The key theoretical insight here is that second-degree price discrimination by the certifier steers

allocations towards less selective employers. Less selective employers hire applicants with lower

expected ability, allowing the certifier to offer tests with lower payoff variation (heterogeneity)

across applicant types. The lower variation in test outcomes lowers information rents by flattening
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the applicant’s indirect utility. This highlights a unique wedge resulting from the interaction of

screening and information design components of the certifiers’ problem. The certifier distorts the

test allocation by reducing the overall informativeness of tests.

In the benchmark (section 6.1), if ust < sb then the certifier allocates the applicant only to

the top employer. The first statement of Theorem 1 shows a reversal in test allocation when the

certifier has to screen the applicant. For standards with sb −ust sufficiently small (but positive), the

certifier allocates the applicant only to the bottom employer. The second statement of Theorem

1 shows that for any choice of standards st > sb, the certifier never chooses an allocation that

allocates the applicant only to the top employer. Formally, we get the following result.

Theorem 1. Under assumption 1, there exists a constant ζ > 0 such that if ζ > sb − ust then the
optimal incentive compatible, obedient and individually rational direct mechanism recommends at with
zero probability (ρt = 0).
Moreover, under assumption 1, if st > sb then the optimal incentive compatible, obedient and individually
rational direct mechanism recommends ab with positive probability (ρb

h ̸= 0).

Proof. See appendix A.5

Remark. Theorem 1 highlights the underlying channel through which the screening frictions

faced by the certifier shape employer competition. In the benchmark in section 4, the certifier

only allocates the applicant to the bottom employer if ust > sb. When the bottom employer sets

a lower standard than the top employer, the certifier can pool a greater mass of low ability appli-

cants if it allocates the applicant to the bottom employer over the top employer. The distortions

from the screening by the certifier amplify this effect. To observe this, recall the certifier’s revenue

is given by (2)

E
[

µ

st
ρt

h(µ) + u
µ

sb
ρb

h(µ)

]
− E

[
1 − F(µ)

f (µ)
K(µ)

]
The slope K(µ) is given by the difference in the applicant’s utility conditional on θ = h and the

applicant’s utility conditional on θ = l.

K(µ) =
(

ρt
h(µ) + uρb

h(µ)
)
−
(

ρt
l(µ) + uρb

l (µ)
)

A reduction in ability contingent variation (heterogeneity) of test outcomes decreases the ability

contingent variation in the applicant’s utility, resulting in lower information rents. A larger mass

of low ability applicants reduces the difference in the test outcome distribution conditional on

θ. Due to this additional benefit, the certifier ”overallocates” the applicant to the less selective

employer, even if it reduces the applicant’s gross utility. The inefficiency in test allocation thus

reduces the informativeness of the tests provided by the certifier.
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6 Equilibrium Analysis

Having described the certifier’s response to standards chosen by the employers, we are ready

to describe the equilibrium. The feedback loop between the certification mechanism and hiring

standards leads to exclusion and narrower hiring standards.

Equilibrium Well-posedness: In general, for any given pair of standards (st, sb), there can be

many optimal mechanisms. More precisely, the set of solutions to (P) might not be a singleton.

Thus, the certifier’s sequential rationality alone does not pin down the certification mechanism.

This is particularly troublesome when the payoffs of the top and the bottom employers vary across

different solutions.20 Conveniently for any given (st, sb), under assumption 1, the payoffs of the

employers are constant over the set of optimal mechanisms. Moreover, the solution set of the

relaxed program varies continuously with the choice of (st, sb). This establishes that under as-

sumption 1, an equilibrium of the certification game exists with employers playing possibly mixed

strategies in the first period. Lemma 2 formilizes these claims

Lemma 2. Let F satisfy assumption 1. For each (st, sb) ∈
[

−vl
vh−vl

, 1
]2

, the employer payoffs Ut and Ub

are constant over the set of solutions to the primal problem (P). Moreover, the payoffs Ut and Ub vary
continuously with (st, sb).

Proof. See appendix A.7

Let σ = (σt, σb) ∈ ∆([0, 1])×∆([0, 1]) represent a mixed strategy profile played by the employ-

ers.

6.1 Single Employer

To demonstrate the equilibrium interaction of hiring standards and certification mechanisms, I

will consider a slight variation of the model with only the top employer, or equivalently u = 0.

Given a standard st > E[µ], the obedience constraint is

(1 − st)E
[
µρt

h(µ)
]
− stE

[
(1 − µ)ρt

l(µ)
]
≥ 0

Writing ρt
l = ρt

h + K and rearranging yields

E
[(

1 − µ

st

)
ρt

h(µ)

]
≤ E [(1 − µ)K(µ)]

By equation 2, we get the certifier’s objective

E
[

µ

st
ρt

h(µ)

]
− E

[
1 − F(µ)

f (µ)
K(µ)

]
20In this case, the description of an equilibrium will involve the employer’s conjectures about the certifier’s response

to a deviation from equilibrium hiring standards. This might be dependent on ad hoc tie-breaking assumptions.
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Example: Assume that the distribution F is uniform, which implies 1−F(µ)
f (µ) = 1− µ. The revenue

expression simplifies further by plugging in the definition of K and using the binding obedience

constraint to substitute E
[

1−F(µ)
f (µ) K(µ)

]
with E

[(
1 − µ

st

)
ρt

h(µ)
]

and is given by

E
[(

2µ

st
− 1
)

ρt
h(µ)

]
Pointwise maximizing the integrand gives that ρi

h(µ) = 1 for all µ ≥ st/2 and 0 otherwise. The

corresponding ρt
l is such that ρt

l(µ) = α if µ ≥ st/2 and 0 otherwise, where α solves

α st

∫ 1

st/2
(1 − µ) dµ = (1 − st)

∫ 1

st/2
µ dµ

The pointwise optimal ρt
h does not satisfy the obedience constraint for st < 2/3, as the corre-

sponding α > 1. To restore obedience, the optimal solution involves allocating types below st/2

to the top employer. When st < 2/3, the optimal mechanism is a bang-bang test. All types below

a threshold µ0 < st/2 are excluded (allocated to the top employer with zero probability) and all

types above µ0 are allocated to the top employer with probability 1, independent of θ. Obedience

constraint then implies that µ0 solves

st

∫ 1

µ0

(1 − µ) dµ = (1 − st)
∫ 1

µ0

µ dµ

Recall the top employer’s payoff from test allocation ρ is

Ut = E
[
µ vh ρt

h(µ) + (1 − µ) vl ρt
l(µ)

]
By binding obedience constraint for hiring standard st

Ut =

(
vh + vl

1 − st

st

)
E
[
µρt

h(µ)
]

Given the designer’s optimal response to st ≥ 2/3, the top employer’s payoff is(
vh + vl

1 − st

st

) ∫ 1

st/2
µ dµ

This expression is increasing in st whenever −vh ≥ vl , this holds as −vl
vh−vl

> 1/2. Thus, the opti-

mal hiring standard is st = 1. When st < 2/3 the allocation takes the bang-bang form mentioned

before. As 1/2 = E[µ] < −vl
vh−vl

≤ st, the threshold µ0 < st/2 ≤ 1/3. Moreover, the binding obedi-

ence constraint implies that the designer responds to an increase in st by increasing threshold µ0.

As µ0 < 1/3 < −vl
vh−vl

, the expected ability of applicants that are excluded from the mechanism af-

ter marginally increasing st is below −vl
vh−vl

. Hence, when st < 2/3 the top employer has a profitable

deviation by increasing it’s hiring standards. Generalizing this example we have Proposition 3
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Proposition 3. Fix u = 0. If 1−F(µ)
f (µ) is convex and assumption 1 holds, then the top employer’s payoff Ut

is increasing in st. In particular, the equilibrium standard is such that st = 1 with probability 1.

Proof. See appendix A.6

Remark. The above example illustrates how the applicant’s private information distorts equilib-

rium hiring standards. Unlike the benchmark in section 4, the presence of private information

leads to exclusion. To reduce information rents, the designer excludes lower types from the mech-

anism. Increasing standards results in more exclusion. Thus, the employer faces a tradeoff: higher

standards improve the expected ability of each hire, but reduce the hiring probability. In the uni-

form example, this trade off is resolved in the top employer raising its standards.

Generally, the designer can respond to increased standards in one of two possible ways. First,

increasing the probability with which the applicant gets hired. The expected ability of these new

applicants must be greater than the employer’s standard, and hence greater than −vl
vh−vl

. In partic-

ular, this leads to a greater payoff for the employer. Second, by decreasing the probability with

which the applicant gets hired. The expected ability of the removed applicant types must be less

than the employer’s standard. But the expected ability of removed applicants could still be greater

than −vl
vh−vl

, in which case the employer’s payoff decreases. In the example, the designer chooses

the latter of the two responses. Yet, the employer finds it profitable to increase standards as the

expected ability of removed applicant types is lower than −vl
vh−vl

.

If 1−F(µ)
f (µ) is convex and 1−F(µ)

(1−µ) f (µ) is non-increasing, then the designer responds by decreasing

the mass of hired applicants. But the expected ability of these applicants is below E[ µ ]. Hence,

the employer sets st = 1.

6.2 Employer Competition

The choice of hiring standards represents how selective an employer can be; having more market

power corresponds to a more selective employer. The selectivity ratio given by sb
st

captures the

bottom employer’s selectivity relative to the top employer. A higher selectivity ratio is indicative

of a more competitive employer market.

Combining Theorem 1 and Proposition 3, we get that there is no equilibrium in pure strategy

for which sb/st ≤ u. Whereas in the benchmark, in section 4, the equilibrium involves sb/st = u.

This observation highlights the connection between the distortion in Theorem 1 and employer

competition.21 The increase in the bottom employer’s selectivity relative to the top employer,

21The caveat being that the model does not always admit an equilibrium in pure strategies, and verifying the existence
of a pure strategy equilibrium requires conditions on employer payoff that are endogenously determined by the choice
of certification mechanism.
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compared to the benchmark in section 4, is a consequence of the certifier’s tendency to steer allo-

cations in favor of less selective employers (Section 5.2).

Recall, in section 4, an bottom employer is weak whenever the applicant’s utility from being

hired by the bottom employer is below the employer’s reservation standard, −vl
vh−vl

> u. In the

benchmark, when the bottom employer is weak, the presence or absence of the bottom employer

does not affect the equilibrium certification mechanism and the top employer’s standard. Theo-

rem 2 shows that even against a weak bottom employer, the top employer is compelled to lower

its standards because of the certifier’s ”overallocation” to the bottom employer. This indicates

increased competition among employers.

Theorem 2. Let F be uniformly distributed on [0, 1]. There exists constants C2 > C1 > 1/2 such that
if C1 < u < −vl

vh−vl
< C2, then σ is part of an equilibrium only if σt(1) = 0, i.e. in equilibrium the top

employer sets standard st = 1 with zero probability.

Proof. See Appendix A.8

Theorem 2 shows a peculiar spillover effect that allocative inefficiencies have on employer

competition. The theorem is driven by two central features of the certification market. First, the

nature of inefficiencies resulting from the interaction of screening and information design (Theo-

rem 1). Second, the hiring standards shape the certifier’s information design problem, resulting

in the equilibrium dependence of the certification mechanism and employers’ hiring standards.

Distortions from screening have an informativeness-reducing effect on test allocation, skewing the

applicant supply to less selective employers. The bottom (”less desirable”) employer can benefit

from this effect by setting higher hiring standards, relative to the benchmark. This forces the top

(”more desirable”) employer to lower its standards to prevent the bottom employer from poaching

away too many potentially high ability applicants.

7 Extensions

7.1 Wages

Consider the base model with the change that instead of setting hiring standards, now the em-

ployers compete over wages. The employers simultaneously announce wages. In response, the

certifier designs a mechanism. The applicant is hired if his expected value to the employer, condi-

tional on test outcomes, is greater than the wage offered. To model imperfect competition through

vertical differentiation, I assume that w dollars from the top employer are worth γt(w) > w to

the applicant and w dollars from the bottom employer are worth w to the applicant. Like before,

we can apply the revelation principle to focus on incentive compatible, individually rational, and
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obedient direct mechanisms.

Given wages (wt, wb) ∈ [0, vh]
2, the obedience constraints for the employers are

E[ µvh + (1 − µ)vl | at ] ≥ wt

and

E[ µvh + (1 − µ)vl | ab ] ≥ wb

Conditional on hiring, an employer’s profit is the expected productivity of the applicant minus

the wage.

The applicant’s obedience requires that he join the employer that is recommended by the certifier.

Type µ applicant’s gross utility from reporting ν

Vw(µ, ν) = µ
(

γt(wt)ρ
t
h(ν) + wbρb

h(ν)
)
+ (1 − µ)

(
γt(wt)ρ

t
l(ν) + wbρb

l (ν)
)

This reduces to the base model in section 3 by defining

st =
wt − vl

vh − vl
, sb =

wb − vl

vh − vl
, and u =

wb

γt(wt)

We can express the applicant’s gross utility as

Vw(µ, ν) = γt(wt)× V(µ, ν)

The results from section 5 can be applied to this setting. In particular, the obedience constraint

for the employers is binding. The expected value of the applicant, conditional on hiring, equals

the offered wage, leading to zero profit for employers. The certifier’s ability to flexibly design

information allows it to freely pool low ability applicants, reducing the employers’ profits. In fact,

the model predicts that vertical differentiation of employers alone does not lead to meaningful

employer competition when the certifier can flexibly design and price information.

7.2 Two Sided Platform

Consider an extension of the base model in which the certifier can charge the employers for par-

ticipating in the mechanism. This might be the case in two-sided platforms for matching workers

with employers. To fix ideas, I model the fee as a fixed fraction of the employers’ profits from

the applicant match. Let α = (αt, αb) ∈ [0, 1] represent the fraction of employers’ surplus that

the certifier charges the employers for using its services. Like before, we can restrict attention

to incentive compatible, individually rational, and obedient direct mechanisms. The analysis of

the applicant’s and employers’ problems is mostly unchanged. The certifier’s revenue from a test

allocation ρ is given by

αtUt(ρ) + αbUb(ρ) + E [ V(µ)−U (µ) ]
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The above expression simplifies to

E
[

µ
(

xt
hρt

h(µ) + xe
hρb

h(µ)
)
+ (1 − µ)

(
xt

l ρ
t
l(µ) + xb

l ρb
l (µ)

) ]
− E[ U (µ) ]

Where xt
θ = 1 + αtvθ and tb

θ = u + αbvθ .

From the expression above, we can see that Proposition 2 extends to this setting. When the certifier

can extract surplus from the employers, the test allocations might be more informative. The fee

charged to the employers aligns the certifier’s preference with the employers’. The distortion from

screening will stiff affect the equilibrium hiring standards, but the effect is now confounded by the

certifier’s incentive to extract surplus from the employers. Depending on the weights αi and αe,

certification could be skewed in favor of either of the employers.

7.3 Beyond Binary Ability

Employers often value applicants for many employment-relevant characteristics. This becomes

especially interesting if employers value different characteristics differently. Putting aside the

question of distortion to employer competition, designing an optimal mechanism in this case is

a multi-dimensional screening problem. This poses new challenges in the design of an optimal

mechanism and the subsequent equilibrium analysis. A first step towards this should involve

the special case when all employers have similar preferences for different characteristics of an

applicant. I don’t explore this possibility, but I conjecture that the link between competition and

applicants’ private information remains in this special case.

8 Conclusion

The paper identifies a novel channel between this reduction in information and competition be-

tween employers. Second-degree price discrimination by the certifier reduces the overall infor-

mativeness of tests, and this can lead to increased competition among the employers, relative to

the benchmark, when the certifier can efficiently allocate tests. Therefore, interventions in the

certifier-applicant market might have unexpected consequences for employer competition. The

rich incentive structure of the certifier’s problem and its feedback with the employers’ actions is

shared by other economically relevant examples, like rating agencies in credit markets or quality

assurance by sellers. Moreover, equilibrium feedback between the decision makers’ (employers’)

actions and the certification mechanism highlights potential regulatory challenges in information

markets more generally (see Bergemann and Bonatti (2019) for a survey of markets for informa-

tion).
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A Appendix

A.1 Benchmark

Proposition 1. The equilibrium hiring standard (in pure strategy) is

( st, sb ) =


(

1
u

−vl
vh−vl

, −vl
vh−vl

)
if u > −vl

vh−vl

(1, x) for x ∈ [u, 1] otherwise

Proof. Note that in any equilibrium, the employer accepts an applicant only if the applicant’s

expected value is positive. Thus, −vl
vh−vl

is a lower bound for the equilibrium standard set by either

employer. Moreover, in any equilibrium st ≥ sb, as otherwise the top employer has a profitable

deviation to st = sb. The designer’s problem can be stated as

max E
[

µ ( ρt
h(µ) + uρb

h(µ) ) + ( 1 − µ )( ρt
l(µ) + uρb

l (µ) )
]

subject to

E[ µ | at ] ≥ st > E[ µ | ab ] ≥ sb > E[ µ | r ]

As st, sb ≥ −vl
vh−vl

> E[ µ ], the obedience constraints are binding for a revenue maximizing testing

policy. If the obedience constraints are slack then the certifier can do better by allocating more

low ability applicants to the employer with slack obedience constraint. Plugging the binding

obedience constraints into the expression for the designer’s revenue yields

E
[

µ

st
ρt

h(µ) + u
µ

sb
ρb

h(µ)

]
The optimal test allocation is then

(ρt
h, ρb

h) =


( 1, 0 ) if ust < sb

( 0, 1 ) if ust > sb

( α, 1 − α ) for some α ∈ [0, 1] otherwise

Note under binding obedience constraint the employer’s payoff can be expressed as:

Ut(ρ) =

(
vh + vl

1 − st

st

)
E
[

µρt
h(µ)

]
Ub(ρ) =

(
vh + vl

1 − sb

sb

)
E
[

µρb
h(µ)

]
If st < max ( 1, sb/u ) then the top employer has a profitable deviation by increasing standards.

If ust > sb and ust >
−vl

vh−vl
then the bottom employer prefers to increase it standard to sb = ust − ε

for small enough ε > 0.

Finally, in equilibrium, the bottom employer should be unable to undercut the top employer. Thus,

ust ≤ −vl
vh−vl

. Moreover, the equilibrium test allocation has (ρt
h, ρb

h) = (1, 0) as otherwise the top

employer can undercut the bottom employer. This establishes the Proposition.
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A.2 Obedience

Consider ρ such that E[ µ | at ] = st > E[ µ | ab ] > sb and ab is recommended with positive

probability. There must be some positive probability set S of types such that ρb
h(µ) > 0 for all

µ ∈ S. For any positive probability subset Ŝ ⊂ S, the designer can perturb the test allocation

as described below. For all µ ∈ Ŝ, conditional on θ = h, the new test allocates the applicant to

the top employer with probability ρt
h(µ) + uρb

h(µ) and rejects with probability 1− ρt
h(µ)− uρb

h(µ).

Otherwise, the test allocation is unchanged. The new test neither changes the gross utility nor

the indirect utility, yielding the same revenue as ρ. This results in a slack obedience constraint

for the top employer. The entrance obedience is not violated as the perturbation can be made

over arbitrary subsets Ŝ. Combining this with the argument in the main text implies that ρ is not

revenue maximizing. Thus, for optimal mechanisms, the obedience constraint holds with equality.

A.3 Individual Rationality

Lemma 1. Let (ρ, φ) be an incentive compatible, obedient, and individually rational direct mech-

anism with indirect utility U . The mechanism (ρ, φ) is revenue maximizing only if U (0) = 0.

Proof. Consider (ρ, φ) such that the binding type is µ0 > 0. From the arguments in the main text,

we get that there is some non-increasing function γ : [0, 1] → [0, 1] and ε > 0 such that γ(µ0) = 0,

γ(µ) > 0 for some µ ∈ [µ0 − ε, µ0] and the following perturbed test allocation ρ̂ is feasible and

incentive compatible

(ρ̂t
h, ρ̂b

h) =

{
( ρt

h(µ) + γ(µ), ρb
h(µ) ) if µ0 − ε ≤ µ < µ0 and ρt

h(µ) + ρb
h(µ) < 1

( ρt
h(µ), ρb

h(µ) ) otherwise

(ρ̂t
l , ρ̂b

l ) =

{
( ρt

l(µ)− γ(µ), ρb
l (µ) ) if µ0 − ε ≤ µ < µ0 and ρt

h(µ) + ρb
h(µ) = 1

( ρt
l(µ), ρb

l (µ) ) otherwise

Let S, S′ ⊂ [µ0 − ε, µ0] such that ρt
h(µ) + ρb

h(µ) < 1 on S and ρt
h(µ) + ρb

h(µ) = 1 on S′. The change

in revenue from this perturbation is∫ µ0

0

{
V̂(µ)− V(µ) +

∫ µ0

µ
[ K̂(ν)− K(ν) ] dν

}
f (µ)dµ

=
∫ µ0−ε

0

[∫ µ0

µ0−ε
γ(ν)dν

]
f (µ)dµ+

∫ µ0

µ0−ε

[∫ µ0

µ
γ(ν)dν

]
f (µ)dµ+

∫
S

µγ(µ) f (µ)dµ−
∫

S′
(1−µ)γ(µ) f (µ)dµ

= F(µ0 − ε)
∫ µ0

µ0−ε
γ(µ)dµ+

∫ µ0

µ0−ε
[F(µ)− F(µ0 − ε)] γ(µ)dµ+

∫
S

µγ(µ) f (µ)dµ−
∫

S′
(1−µ)γ(µ) f (µ)dµ

=
∫ µ0

µ0−ε
γ(µ) F(µ) dµ +

∫
S

µγ(µ) f (µ)dµ −
∫

S′
(1 − µ)γ(µ) f (µ)dµ
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≥
∫ µ0

µ0−ε
γ(µ) F(µ) dµ −

∫ µ0

µ0−ε
(1 − µ)γ(µ) f (µ)dµ

Notice that the change in revenue is composed of positive terms except for the reduction in the

applicant’s surplus from a deceased employment probability of low ablity applicants in the set S′.

When
∫ µ0

µ0−ε γ(µ) F(µ) dµ +
∫

S µγ(µ) f (µ)dµ −
∫

S′(1− µ)γ(µ) f (µ)dµ < 0 we can further perturb

the test by offering a lottery of test ρ̂ and the test (1, 0, 1, 0). If ρ is obedient, then ρ̂ has slack

obedience constraint for the top employer. In particular, we can further perturb the allocation into

ρ′ = (1 − α)ρ̂ + α(1, 0, 1, 0). Where α ∈ (0, 1) is chosen such that

αst

∫ 1

0
(1 − µ) dF(µ)− (1 − α)st

∫ µ0

µ0−ε
(1 − µ)γ(µ) f (µ)dµ = α(1 − st)

∫ 1

0
µ dF(µ)

Rearranging the terms, we get the following

α

(
1 − E[µ]

st

)
= (1 − α)

∫ µ0

µ0−ε
(1 − µ)γ(µ) f (µ)dµ

As ε can be made arbitrarily small, such an α exists in the interval (0, 1). By the choice of α, the

perturbed test ρ′ is obedient.

For sb ≥ ust we get that Π(ρ) ≤ E[µ]
st

, as E[µ]
st

is the revenue generated by the optimal mechanism

from the benchmark in section 4. In particular, we get the following

α( 1 − Π(ρ) ) ≥ (1 − α)
∫ µ0

µ0−ε
(1 − µ)γ(µ) f (µ)dµ ≥ (1 − α) ( Π(ρ)− Π(ρ̂) )

This implies

Π(ρ′)− Π(ρ) > 0

Thus, we can choose some α ∈ (0, 1) such that the test ρ′ is incentive compatible, obedient, and

yields a greater revenue than ρ.

Whenever sb < ust the optimal mechanism only allocates the applicant to the bottom employer

or to being unemployed (bottom employer-only allocation). If sb < ust then the bottom employer-

only allocation can produce at least as much gross surplus as any other allocation. Additionally,

as sb < st, the certifier can pool a greater mass of low-ability applicants. Thus, a bottom employer-

only allocation minimizes the information rent by reducing K(µ) = (ρt
h(µ) + uρb

h(µ))− (ρt
h(µ) +

uρb
h(µ)) while keeping the applicant’s gross surplus fixed. In this case, the argument in text shows

that U (0) = 0 as for a bottom employer-only allocation negative slope K(µ) < 0 implies that

ρt
h(µ) + ρb

h(µ) < 1.

A.4 Solution to Relaxed Problem

Geometry of Optimal Tests: For the formal analysis, consider ρ as an element of the Hilbert

space L2([0, 1] → R4, F) with the usual norm topology and Borel sigma algebra. Where ρ =
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(ρt
h, ρb

h, ρt
l , ρb

l ). I maintain this assumption for the rest of the appendix.

For the relaxed problem, we can describe a test allocation ρ as a function from [0, 1] to the closed

convex polytope C. Where

C =

x ∈ R4
+

∣∣∣∣ x1 + x2 ≤ 1

x3 + x4 ≤ 1

x1 + ux2 − x3 − ux4 ≥ 0


Recall, the relaxed problem (R) is given by the following

max
ρ: [0,1]→∆(A)×∆(A)

E
[
µ( ρt

h(µ) + uρb
h(µ) ) + (1 − µ)( ρt

l(µ) + uρb
l (µ) )

]
− E

[(
1 − F(µ)

f (µ)

)
K(µ)

]

subject to

(1 − st)
∫ 1

0
µρt

h(µ) dF(µ)− st

∫
(1 − µ)ρt

l(µ) dF(µ) ≥ 0

(1 − sb)
∫ 1

0
µρb

h(µ) dF(µ)− sb

∫
(1 − µ)ρb

l (µ) dF(µ) ≥ 0

K ≥ 0

Define the feasibility set

F :=
{

ρ ∈ L2([0, 1] → [0, 1]4) | ρt
h(µ) + ρb

h(µ) ≤ 1, ρt
l(µ) + ρb

l (µ) ≤ 1, K(µ; ρ) ≥ 0 ∀ µ ∈ [0, 1]
}

Here ρ = (ρt
h, ρb

h, ρt
l , ρb

l ). The set F is bounded, convex, and norm-closed.22 As L2 is a reflexive

Banach space, F is weakly closed and hence weakly compact.23 The objective function is a con-

tinuous linear functional of ρ, thus a solution to the relaxed problem exists in F . The obedience

constraints satisfy the usual Robinson constraint quantification, see Robinson (1975) and ch 8 of

Luenberger (1997).24 Thus for each solution ρ∗ of (R) there exists a multiplier λ∗ = (λ∗
t , λ∗

b) ∈ R2
+

such that the corresponding Lagrangian L has a saddle point at (ρ∗, λ∗). More precisely, for all

ρ ∈ F and λ ∈ R2
+, the following holds

L(ρ, λ∗) ≤ L(ρ∗, λ∗) ≤ L(ρ∗, λ)

Where the Lagrangian is given by

L(ρ, λ) :=
∫ 1

0
⟨ l(µ, λ), ρ(µ)⟩ dF(µ)

22Where norm closedness folows from the fact that convergence in L2 norm implies pointwise convergence almost
everywhere over a subsequence.

23See chapter 2 of Bonnans and Shapiro (2013) for details.
24This amounts to having non-empty interior of the set of all obedient test allocations in F .
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Where ⟨ , ⟩ is the usual inner product in R4 and

l(µ, λ) :=
(

µ − 1 − F(µ)
f (µ)

, u
(

µ − 1 − F(µ)
f (µ)

)
, 1 − µ +

1 − F(µ)
f (µ)

, u
(

1 − µ +
1 − F(µ)

f (µ)

) )
+ (µλt(1 − st), µλb(1 − sb), −(1 − µ)λtst,−(1 − µ)λbsb)

By the saddle point property above, we get

L(ρ∗, λ∗) = max
ρ∈F

∫ 1

0
⟨ l(µ, λ∗), ρ(µ)⟩ dF(µ)

=
∫ 1

0
max

ρ(µ)∈C
⟨ l(µ, λ∗), ρ(µ)⟩ dF(µ)

By linearity of inner product and the fact that linear functions optimized over closed and convex

polytopes achieve optima at an extreme point, we get25

ρ∗(µ) ∈ ex(C) for all µ

The set ex(C) can be enumerated as26

ex(C) =


(0, 0, 0, 0)

(0, 1, 0, 1), (u, 0, 0, 1), (0, 1, u, 0), (1, 0, 1, 0)

(1, 0, 0, 1), (0, 1, 0, 0)

(1, 0, 0, 0)


In particular, the optimal test allocation ρ∗ takes finitely many values. This establishes the key

assumption made in the proof of Proposition 2 sketched in section 5.1 about the optimal test taking

finitely many values.

A.4.1 Proof of Proposition 2

To prove Proposition 2 we can then extend the argument from the main text (section 5.1) to arbi-

trary ordered sets S1 < S2 and their subsets S′
1, S′

2 instead of intervals.

To complete the proof, I will present the calculation for case 2), not shown in the main text.

Fix some test allocation ρ. Consider two subsets of [0, 1], S1 and S2 such that S1 < S2 in the

strong set order. Let the slope K be constant on these intervals. Assuming for contradiction that

K(S1) > K(S2) and that

ρt
h(S2) + uρb

h(S2) < ρt
h(S1) + uρb

h(S1)

Consider subsets S′
1 ⊂ S1 and S′

2 ⊂ S2 such that∫
S′

1

µ dF(µ) =
∫

S′
2

µ dF(µ) > 0 (MC2)

25For a closed convex polytope X the set ex(X) is the set of all extreme points of X.
26Note, the representation of ex(C) is to emphasis monotonicity of K.
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We can perturb ρh on the sets S′
1 and S′

2. Define, for j ∈ {t, b} and ε > 0, the following perturba-

tions

ρ̃
j
h(S

′
1) := (1 − ε)ρ

j
h(S1) + ερ

j
h(S2) and ρ̃

j
h(S

′
2) := (1 − ε)ρ

j
h(S2) + ερ

j
h(S1)

From equation (2) we observe that the choice above leaves the information design part of the

revenue unchanged. Thus, the change in revenue from the perturbation is positive whenever(
ρt

h(S1) + uρb
h(S1)− ρt

h(S2)− uρb
h(S2)

)(∫
S′

1

(
1 − F(µ)

f (µ)

)
dF(µ)−

∫
S′

2

(
1 − F(µ)

f (µ)

)
dF(µ)

)
≥ 0

As ρt
h(S2) + uρb

h(S2) < ρt
h(S1) + uρb

h(S1), the change in revenue due to the perturbation is positive

iff ∫
S′

1

(
1 − F(µ)

f (µ)

)
dF(µ)−

∫
S′

2

(
1 − F(µ)

f (µ)

)
dF(µ) ≥ 0

Dividing and multiplying the integrands by µ yields∫
S′

1

1 − F(µ)
µ f (µ)

µ dF(µ)−
∫

S′
2

1 − F(µ)
µ f (µ)

µ dF(µ)

By assumption 1 and (MC2) the above is bounded below by[
min
µ∈S′

1

{
1 − F(µ)

µ f (µ)

}
− max

µ∈S′
2

{
1 − F(µ)

µ f (µ)

}]
×
∫

S′
1

µ dF(µ) ≥ 0

This establishes that ρ can be perturbed into a test ρ̃ which preserves obedience and has a non-

decreasing slope K. Importantly, the last inequality holds strictly for all smooth cdf F with support

[0, 1] as the function 1−F(µ)
f (µ) is non-increasing and 1

µ is strictly decreasing.

A.5 Increased Affinity to Less Selective Employer

Theorem 1: If assumption 1 holds then there exists a constant ζ > 0 such that if ζ > sb − ust then

the optimal mechanism recommends at with zero probability (ρt = 0).

Moreover, under assumption 1, if st > sb then the optimal incentive compatible, obedient and

individually rational direct mechanism recommends ab with positive probability (ρb
h ̸= 0).

Proof. Recall the Lagrangian for the relaxed problem (R) is given by L(ρ, λ) = E[ ⟨l(µ, λ), ρ(µ)⟩ ]
(see sction A.4) where

l(µ, λ) =

(
µ − 1 − F(µ)

f (µ)
, u
(

µ − 1 − F(µ)
f (µ)

)
, 1 − µ +

1 − F(µ)
f (µ)

, u
(

1 − µ +
1 − F(µ)

f (µ)

) )
+ (µλt(1 − st), µλb(1 − sb), −(1 − µ)λtst,−(1 − µ)λbsb)
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For any optimal mechanism ρ∗ and corresponding multiplier λ∗ we describe the optimal test

choice by it’s epigraph.27

epi⟨ l(·, λ∗), ρ∗(·)⟩ =
⋂

x∈ex(C)
epi⟨ l(·, λ∗), x⟩

The equality follows from the saddle point property. The following conditions are sufficient for a

test ρ∗ to only assign the applicant to the bottom employer

epi⟨ l(·, λ∗), (0, 1, 0, 0)⟩ ⊆ epi⟨ l(·, λ∗), (1, 0, 0, 0)⟩

epi⟨ l(·, λ∗), (0, 0, 0, 1)⟩ ⊆ epi⟨ l(·, λ∗), (0, 0, u, 0)⟩

epi⟨ l(·, λ∗), (0, 1, 0, 0)⟩ ⊆ epi⟨ l(·, λ∗), (u, 0, 0, 0)⟩

epi⟨ l(·, λ∗), (0, 1, 0, 1)⟩ ⊆ epi⟨ l(·, λ∗), (1, 0, 1, 0)⟩

The above holds simultaneously if the following equations hold simultaneously

λ∗
b(1 − sb)− λ∗

t (1 − st) ≥ 1 − u,

uλ∗
t st − λ∗

b sb ≥ 0,

λ∗
b(1 − sb)− uλ∗

t (1 − st) ≥ 0,

λ∗
b(µ − sb)− λ∗

t (µ − st) ≥ 1 − u

Let st > sb, and set λ∗
t = λ∗

b
sb
ust

+ ε for small ε > 0.28 By the choice of λ∗
t and st > sb, the second

and the third equations above are satisfied. Moreover, the first equation and the fourth hold if the

following holds for all µ

λ∗
b

(
µ − sb − (µ − st)

sb

ust

)
− ε(µ − st) ≥ 1 − u

Simplifying gives us the following sufficient condition

λ∗
b

µ(ust − sb) + (1 − u)stsb

ust
− ε(1 − st) ≥ 1 − u

As ρ∗ is a bottom employer-only allocation, it comprises of tests of the form (0, 0, 0, 0), (0, 1, 0, 1),

or (0, 1, 0, 0). By monotonicity of K, the allocation (0, 1, 0, 0) is for higher types than test allocation

of (0, 0, 0, 0) or (0, 1, 0, 1). Note that ⟨ l(·, λ), (0, 0, 0, 0) ⟩ = 0 and ⟨ l(µ, λ), (0, 1, 0, 1) ⟩ = uµ +

27The epigraph a function f : X → [−∞, ∞] valued in the extended real numbers is the set epi f = {(x, r) ∈
X × R : r ≥ f (x)}

28If st ≤ sb then the optimal allocation only allocates to the top employer with positive probability. In particular, this
implies that ζ < (1 − u) −vl

vh−vl
.
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λb(µ− sb). In particular, ⟨ l(µ, λ), (0, 1, 0, 1)⟩ crosses ⟨ l(·, λ), (0, 0, 0, 0) ⟩ at most once from below.

We get that the optimal test is of the following form

( ρt
h
∗(µ), ρb

h
∗(µ), ρt

l
∗(µ), ρb

l
∗(µ) ) =


(0, 0, 0, 0) µ ∈ [0, µ0)

(0, 1, 0, 1) µ ∈ [µ0, µ1)

(0, 1, 0, 0) µ ∈ [µ1, 1]

(ρBO)

As E[µ] < −vl
vh−vl

≤ sb < 1, we have 0 < µ0 < 1 and µ0 < µ1 ≤ 1. By first order necessary

conditions for µ0, we get

λ∗
b =

u
sb − µ0

Positivity of the multipliers implies µ0 < sb. Plugging this into the required inequality, we get

µ(ust − sb) + (1 − u)stsb

st(sb − µ0)
− ε(1 − st) ≥ 1 − u

As ε > 0 can be arbitrarily small, it suffices to consider

µ(ust − sb) + (1 − u)stsb

st(sb − µ0)
> 1 − u

Dividing and multiplying by st(sb − µ0) and then simplifying the above inequality gives us the

following sufficient condition

stµ0(1 − u) > sb − ust

Note that the above holds whenever sb < ust.

We have shown that when the above condition holds, then there exists λ∗ ≥ R2
+ such that the

bottom employer-only allocation (ρBO) optimizes the Lagrangian pointwise. In particular, (ρBO) is a

solution to (R). The first statement of Theorem 1 follows from setting ζ = −vl
vh−vl

µ∗
0(1−u)

2 . Here µ∗
0 is

the smallest value for µ0 across all sb. This is positive as sb ≥ −vl
vh−vl

> E[µ]. I present more details

about this lower bound in section A.6. The important detail being µ∗
0 > 0 and hence ζ > 0.

To prove the second statement, assume for contradiction that for some st > sb the optimal

test allocation is top employer-only. By reasoning similarly to the proof of the first statement, the

optimal top employer-only test is given as following

( ρt
h
∗(µ), ρb

h
∗(µ), ρt

l
∗(µ), ρb

l
∗(µ) ) =


(0, 0, 0, 0) µ ∈ [0, µ0)

(1, 0, 1, 0) µ ∈ [µ0, µ1)

(1, 0, 0, 0) µ ∈ [µ1, 1]

(ρTO)

Where (ρTO) pointwise maximizes the Lagrangian L(ρ, λ) = E[ ⟨l(µ, λ), ρ(µ)⟩ ] for some choice of

multiplier λ∗ = (λ∗
t , λ∗

b) where

λ∗
t =

1
st − µ0
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and st > µ0 > 0. To establish a contradiction, consider the following two cases:

Case I: If sb − u
λ∗

b
< µ0 then the line ⟨ l(·, λ∗), (0, 1, 0, 1) ⟩ crosses ⟨ l(·, λ∗), (0, 0, 0, 0) ⟩ before

⟨ l(·, λ∗), (1, 0, 1, 0) ⟩ (i.e. before µ0). Thus (ρTO) does not pointwise maximize L(·, λ∗).

Case II: If sb − u
λ∗

b
≥ µ0 then the line ⟨ l(·, λ∗), (0, 1, u, 0) ⟩ crosses ⟨ l(·, λ∗), (0, 0, 0, 0) ⟩ before

⟨ l(·, λ∗), (1, 0, 1, 0) ⟩ (i.e. before µ0). To see this, let µ′ be such that ⟨ l(µ′, λ∗), (0, 1, u, 0) ⟩ = 0. In

particular

u + µ′(1 − sb)λ
∗
b − ust(1 − µ′)λ∗

t = 0

Eearranging gives the following

µ′ × ( (1 − sb)λ
∗
b + ustλ

∗
t ) = u

µ0

st − µ0

As sb − u
λ∗

b
≥ µ0 and as λ∗

t = 1
st−µ0

we get the following

µ′ ×
(

1 − sb

sb − µ0
+

st

st − µ0

)
≤ µ0

st − µ0

As st > sb we get that 1−sb
sb−µ0

< 1−st
st−µ0

, plugging this in the left-hand side above shows that

µ′ < µ0

Thus (ρTO) does not pointwise maximize L(·, λ∗) for any value of λ∗
b ∈ R+. This establishes the

second statement of the theorem.

A.6 Single employer

Proposition 3: Fix u = 0. If 1−F(µ)
f (µ) is convex and assumption 1 holds, then the top employer’s

payoff Ut is increasing in st. In particular, the equilibrium standard is such that st = 1.

Proof. First, note that the employer never chooses st < E[ µ ] ≤ −vl
vh−vl

. Fix some st ∈ ( −vl
vh−vl

, 1). Let

T(st) = E[ V(µ) ] be the expected gross utility generated by the optimal mechanism corresponding

to standard st. As the obedience constraint must bind for the optimal mechanism, the employer’s

payoff is given by:

( stvh + (1 − st)vl ) T(st)

The employer prefers a standard s′t > st over st if and only if(
s′tvh + (1 − s′t)vl

)
T(s′t)− ( stvh + (1 − st)vl ) T(st) > 0

⇐⇒ s′tT(s
′
t)− stT(st) >

−vl

vh − vl
( T(s′t)− T(st) ) (3)
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As argued in section A.5, under assumption 1, the optimal mechanism can be found among the

ones with he following structure:

( ρt
h(µ), ρt

l(µ) ) =


(0, 0) µ ∈ [0, µ0)

(1, 1) µ ∈ [µ0, µ1)

(1, 0) µ ∈ [µ1, 1]

Where
∫ 1

µ0
µdF(µ) = st

1−st

∫ 1
µ1
(1 − µ)dF(µ).

For a given st, the optimal mechanism can be described by the tuple ( µ0(st), µ1(st) ). Consider the

Lagrangian, L(µ0, µ1, λ; st), corresponding to the designer’s constrained optimization problem,

given by ∫ µ1

µ0

(1 + λ(µ − st)) dF(µ) +
∫ 1

µ1

(
µ(1 + λ(1 − st))−

1 − F(µ)
f (µ)

)
dF(µ)

Let µ0(st), µ1(st), λ(st) be the optimal solutions. Note that λ(st) ≥ 0 and by assumption 1 the

inverse hazard rate 1−F(µ)
f (µ) is decreasing.

First, we will show that µ0(st) is increasing. Using the first order necessary conditions with respect

to µ0 and µ1 we get the following

λ(st) =
1

st − µ0(st)

λ(st) =
1
st

[
1 +

1 − F(µ1(st))

(1 − µ1(st)) f (µ1(st))

]
First, I will handle the case when there is a corner solution with µ1(st) = 1. Only the first order

necessary condition for µ0 holds. By positivity of the multiplier, we get µ0(st) < st. By the saddle

point property of the Lagrangian, we must have 1 + λ(µ − st) ≥ µ(1 + λ(1 − st)) − 1−F(µ)
f (µ) for

all µ ∈ [0, 1]. Importantly, 1 + λ(µ − st) becomes positive before µ(1 + λ(1 − st))− 1−F(µ)
f (µ) turns

positive. As 1 + λ(µ − st) is positive for µ > µ0 and as µ(1 + λ(1 − st))− 1−F(µ)
f (µ) ≥ µ − 1−F(µ)

f (µ) , we

get that µ0 is smaller than µ′ where µ′ − 1−F(µ′)
f (µ′) = 0. I will show later that this implies µ0 < EF[µ].

If the top employer marginally increases its standard from st to s′t > st and µ1(s′t) = 1. For

obedience to hold µ0(s′t) > µ0(st). The new mechanism removes types with the lowest expected

ability, which is below EF[µ] <
−vl

vh−vl
, thus the top employer’s payoff increases.

Now, let’s consider the case with an interior solution. Define the following function of (µ0, µ1, st)

Q1(µ0, µ1; st) :=
st − µ0

st

[
1 +

1 − F(µ1)

(1 − µ1) f (µ1)

]
− 1

Now, consider the obedience constraint

( 1 − st)
∫ 1

µ0(st)
µ dF(µ)− st

∫ µ1(st)

µ0(st)
(1 − µ) dF(µ) = 0
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Define the following function of (µ0, µ1, st)

Q2(µ0, µ1; st) := ( 1 − st)
∫ 1

µ0

µ dF(µ)− st

∫ µ1

µ0

(1 − µ) dF(µ)

Let Q(µ0, µ1; st) := ( Q1, Q2 ). By the first order condition and binding obedience constraint, we

get

Q(µ0(st), µ1(st); st) = (0, 0)

The Jacobian of Q is given by

J(µ0, µ1; st) :=

[
∂

∂st
Q1 | ∂

∂µ0
Q1

∂
∂µ1

Q1
∂

∂st
Q2 | ∂

∂µ0
Q2

∂
∂µ1

Q2

]
=
[

Js | Jµ

]
Where

Js =

 µ0
s2

t

[
1 + 1−F(µ1)

(1−µ1) f (µ1)

]
−
∫ 1

µ0
µ dF(µ)−

∫ µ1
µ0
(1 − µ) dF(µ)


and

Jµ =

 − 1
st

[
1 + 1−F(µ1)

(1−µ1) f (µ1)

]
st−µ0

st
∂

∂µ1

(
1−F(µ1)

(1−µ1) f (µ1)

)
(st − µ0) f (µ0) −st(1 − µ1) f (µ1)


From the above, we get

det Jµ = (1 − µ1) f (µ1)

[
1 +

1 − F(µ1)

(1 − µ1) f (µ1)

]
− (st − µ0)2

st
f (µ0)

∂

∂µ1

(
1 − F(µ1)

(1 − µ1) f (µ1)

)
Assumption 1 implies ∂

∂µ

(
1−F(µ)

(1−µ) f (µ)

)
≤ 0, thus

det Jµ |(µ0(st),µ1(st),st) > 0

By Implicit Function Theorem ( µ0(st), µ1(st) ) can be described by an implicit function g. In

particular g(st) = ( µ0(st), µ1(st) ) and

∂

∂ st
g = −J−1

µ × Js

Where

J−1
µ =

1
det Jµ

 −st(1 − µ1) f (µ1) − st−µ0
st

∂
∂µ1

(
1−F(µ1)

(1−µ1) f (µ1)

)
−(st − µ0) f (µ0) − 1

st

[
1 + 1−F(µ1)

(1−µ1) f (µ1)

] 
We can conclude that ∂

∂st
µ0(st) ≥ 0 as

µ0(st)

st
(1 − µ1(st)) f (µ1(st))

[
1 +

1 − F(µ1(st))

(1 − µ1(st)) f (µ1(st))

]
− T(st)

st − µ0(st)

st

∂

∂µ1

(
1 − F(µ1(st))

(1 − µ1(st)) f (µ1(st))

)
> 0
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This establishes that µ0(st) is increasing.

Next, we will show that µ1(st) is decreasing. After some algebra and using the fact that the obe-

dience constraint binds, we get ∂
∂ st

µ1(st) equals

1
det Jµ

[
1
s2

t

(
1 +

1 − F(µ1(st))

(1 − µ1(st)) f (µ1(st))

)(
µ0(st)(st − µ0(st)) f (µ0(st))−

∫ 1

µ0(st)
µ dF(µ)

) ]
The sign of ∂

∂ st
µ1(st) is determined by

µ0(st)(st − µ0(st)) f (µ0(st))−
∫ 1

µ0(st)
µ dF(µ)

< µ0(st) × ( (1 − µ0(st)) f (µ0(st))− 1 + F(µ0(st)) )

Assumption 1 implies the bounded hazard rate property. Thus, we get

(1 − µ0(st)) f (µ0(st))− 1 + F(µ0(st)) ≤ 0

=⇒ ∂

∂ st
µ1(st) ≤ 0

This establishes that µ1(st) is decreasing.

By the first order condition for µ1, we get the following

µ1(st) ( 1 + (1 − st) λ(st) )−
1 − F(µ1(st))

f (µ1(st))
= 1 + ( µ1(st)− st ) λ(st) (4)

By the binding obedience constraint, we get that µ0(1) = µ1(1). Using this and evaluating equa-

tion (4) for st = 1 we get

µ1(1)−
1 − F(µ1(1))

f (µ1(1))
= 0 (5)

By assumption ??, 1−F(µ)
f (µ) is convex and we can apply Jensen inequality to claim the following

E[ µ ] = E
[

1 − F(µ)
f (µ)

]
≥ 1 − F(E[ µ ])

f (E[ µ ])

=⇒ E[ µ ]− 1 − F(E[ µ ])

f (E[ µ ])
≥ 0

Moreover, µ − 1−F(µ)
f (µ) is increasing by assumption 1. Equation (5) then implies that µ0(1) =

µ1(1) ≤ E[ µ ]. Monotonicity of µ0(st) then establishes µ0(st) < E[ µ ] for all st.

The designer responds to a marginal increase in standards by increasing µ0 and lowering µ1. As

µ0 < −vl
vh−vl

, the average ability of applicants excluded by the designer is low enough. In particular,

equation (3) holds for s′t = 1 and for all st ∈
[

−vl
vh−vl

, 1
)

.
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To complete the argument, we need to show that µ0(st) > 0 for all st > E[µ]. This rules out the

corner solution with µ0(st) = 0. As st > E[µ], by obedience constraint we get

µ0(st) = 0 =⇒ µ1(st) < 1

Using the first-order necessary conditions, we get

1
st

≥ 1
st

[
1 +

1 − F(µ1(st))

(1 − µ1(st)) f (µ1(st))

]
This leads to a contradiction as 1 + 1−F(µ1(st))

(1−µ1(st)) f (µ1(st))
> 1. This also establishes the required lower

bound in section A.5 (µ∗
0 > 0).

A.7 Equilibrium Well-posedness

We first show that in any pure strategy equilibrium the top employer’s standard st ≥ sb. Assume

for contradiction that st < sb, then the designer chooses to allocate to only the top employer. If

st < sb, any test allocation ρ is revenue equivalent to a perturbed test allocation ρ̂. Where ρ̂ is

defined such that for all µ and θ, the allocation ρ̂ recommends the applicant to the top employer

with probability ρt
θ(µ) + uρb

θ(µ) and rejects with probability 1 − ρt
θ(µ)− uρb

θ(µ). This introduces

slack to the top employers’ obedience constraint, as sb > st, thus ρ is not optimal. By section A.6,

the top employer has a profitable deviation of setting st = sb. This shows there is no equilibrium

(in pure strategy) for which st < sb.

Now we will prove the continuity of the employer payoffs, which will allow us to establish the

existence of a mixed strategy equilibrium.

Lemma 2: Let F satisfy assumption 1. For each (st, sb) ∈
[

−vl
vh−vl

, 1
]2

, the employer payoffs Ut and

Ub are constant over the set of solutions to the primal problem (P). Moreover, the payoffs Ut and

Ub vary continuously with (st, sb).

Proof. I present the proof in two parts. First, I will establish the conditions for Berge’s Maximum

Theorem (see chapter 17 in Aliprantis and Border (2006) for reference). This will establish the

upper hemicontinuity continuity of the set of optimal solutions to (P). Second, I will show that

for any given s = (st, sb), the employers’ utility Ut and Ub are constant over the set of optimal

mechanisms. This, along with upper hemicontinuity of the solution set and contunity of Ut, Ub in

the test allocation ρ implies continuity of Ut and Ub in s.

Claim 1: Conditions for Berge’s Maximum Theorem (Theorem 17.31 in Aliprantis and Border

(2006)) hold.
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Recall the set of feasible tests is F (see A.4) and that F is bounded, convex, and weakly com-

pact. The objective function is continuous on the feasible set. Thus, to use Berger’s Maximum

theorem, we need to establish the continuity of the following set-valued map representing the

obedience constraints.

Define the obedience constraint correspondence by

O(st, sb) :=

{
ρ ∈ F

∣∣∣∣ (1 − st)
∫ 1

0 µρt
h(µ) dF(µ)− st

∫
(1 − µ)ρt

l(µ) dF(µ) = 0,

(1 − sb)
∫ 1

0 µρb
h(µ) dF(µ)− sb

∫
(1 − µ)ρb

l (µ) dF(µ) = 0

}

and its graph

Gr(O) :=

{
(s, ρ) | s ∈

[
−vl

vh − vl
, 1
]2

, ρ ∈ O(s)

}
The correspondence O has a closed graph because the equalities defining the set O(s) are jointly

continuous in s and ρ. As O is compact-valued, the above implies that O is upper hemicontinous.

Lower hemicontinuity follows from considering lotteries over test allocations

ρ̂ = (1 − εt − εb − δt − δb) · ρ + εt · (1, 0, 0, 0) + εb · (0, 1, 0, 0) + δt · (1, 0, 1, 0) + δb · (0, 1, 0, 1)

For a given s = (st, sb) ∈
(

−vl
vh−vl

, 1
)2

. Note that for any open set Y ⊂ F such that ρ ∈ Y there exists

arbitrarily small εt, εb, δt, δb > 0 for which ρ̂ ∈ Y. In particular, there exists an open set Nb(s) such

that s ∈ Nb(s) and Y ∩O(s′) ̸= ∅ for all s′ ∈ Nb(s). For boundary values sj ∈
{

−vl
vh−vl

, 1
}

we set

ε j or δj equal to zero, appropriately.

Claim 2: For any given s = (st, sb), the employers’ utility Ut and Ub are constant over the set

of optimal mechanisms.

Fix some (st, sb). Represent the set of solutions to (R) by X∗(s). Recall for an optimal test

allocation ρ the obedience constraint binds. Thus for any ρ ∈ X∗(s) we get

Ut(ρ) =

(
vh + vl

1 − st

st

)
E
[

µρt
h(µ)

]
Ub(ρ) =

(
vh + vl

1 − sb

sb

)
E
[

µρb
h(µ)

]
In particular, Ut and Ub are constant over X∗(s) if the following holds

ρ, ρ′ ∈ X∗(s) =⇒ ρh = ρ′h (6)

I will show that the above statement (6) holds by means of contradiction. Assume that there exist

ρ, ρ′ ∈ X∗(s) such that ρh ̸= ρ′h. In particular, there exists a set S ⊂ [0, 1] of types with positive

measure such that ρh(µ) ̸= ρ′h(µ) for all µ ∈ S. Note that X∗(s) is convex so αρ+ (1− α)ρ′ ∈ X∗(s)
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for all α ∈ [0, 1]. We will proceed in two cases:

Case I: There exists a positive probability subset S′ ⊂ S such that for all µ ∈ S′ either K(µ; ρ) > 0

or K(µ; ρ′) > 0. In this case, we consider some α ∈ (0, 1) and define ρ̂ := αρ + (1 − α)ρ′. On

the set S′, we have 0 < ρ̂t
h, ρ̂b

h < 1 and K( · ; ρ̂) > 0. The previous statement follows from the

characterization of extreme points. We can then choose two positive probability (ordered) subsets

S′
1 < S′

2 ⊂ S′. Finally, we perturb ρ̂ on S′
1 by slightly increasing ρ̂b

h and slightly decreasing ρ̂t
h. To

maintain obedience, we also perturb ρ̂ on S′
2 by slightly increasing ρ̂t

h and slightly decreasing ρ̂b
h. A

calculation similar to proof of Proposition 3, in section A.4, shows that constructing such a pertur-

bation without violating obedience is feasible and yields strictly greater revenue, a contradiction.

Case II: For all µ ∈ S the slope K(µ; ρ) = K(µ; ρ′) = 0. Define ρ̂ := αρ + (1 − α)ρ′ and µ :=

inf{ µ | K(µ, ρ̂) > 0}. We can partition [0, µ] into intervals [µi, µi+1) for 0 = µ0 ≤ µ1 ≤ µ2 ≤ µ3 ≤
µ4 ≤ µ. Where∫ µ

µ4

µ dF(µ) = α
∫ µ

0
µ · 1{ρ=(1,0,1,0)} dF(µ) + (1 − α)

∫ µ

0
µ · 1{ρ′=(1,0,1,0)} dF(µ)

∫ µ4

µ3

µ dF(µ) = α
∫ µ

0
µ · 1{ρ=(0,1,u,0)} dF(µ) + (1 − α)

∫ µ

0
µ · 1{ρ′=(0,1,u,0)} dF(µ)

∫ µ3

µ2

µ dF(µ) = α
∫ µ

0
µ · 1{ρ=(u,0,0,1)} dF(µ) + (1 − α)

∫ µ

0
µ · 1{ρ′=(u,0,0,1)} dF(µ)

∫ µ2

µ1

µ dF(µ) = α
∫ µ

0
µ · 1{ρ=(0,1,0,1)} dF(µ) + (1 − α)

∫ µ

0
µ · 1{ρ′=(0,1,0,1)} dF(µ)

The partition constructed above rearranges the mass of high ability (θ = h) applicants for types

below µ. Define ρ̃ which equals ρ̂ for types greater than µ and defined as following for types µ ≤ µ

ρ̃(µ) =



(0, 0, 0, 0) µ < µ1

(0, 1, 0, 1) µ ∈ [µ1, µ2)

(u, 0, 0, 1) µ ∈ [µ2, µ′)

(u, 0, u, 0) µ ∈ [µ′, µ3)

(0, 1, u, 0) µ ∈ [µ3, µ4)

(1, 0, 1, 0) µ ∈ [µ4, µ]

or



(0, 0, 0, 0) µ < µ1

(0, 1, 0, 1) µ ∈ [µ1, µ′)

(0, 1, u, 0) µ ∈ [µ′, µ2)

(u, 0, u, 0) µ ∈ [µ2, µ3)

(0, 1, u, 0) µ ∈ [µ3, µ4)

(1, 0, 1, 0) µ ∈ [µ4, µ]

Where µ′ is chosen such that∫ µ

0
(1 − µ) ·

(
1{ρ̃=(0,1,0,1)} + 1{ρ̃=(u,0,0,1)}

)
dF(µ)

= α
∫ µ

0
(1 − µ) · 1{ρ=(0,1,0,1)} dF(µ) + (1 − α)

∫ µ

0
(1 − µ) · 1{ρ′=(0,1,0,1)} dF(µ)

By construction, we get ∫ 1

0
(1 − µ)ρ̃b

l (µ) dF(µ) =
∫ 1

0
(1 − µ)ρ̂b

l (µ) dF(µ)
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and ∫ 1

0
µρ̃

j
h(µ) dF(µ) =

∫ 1

0
µρ̂

j
h(µ) dF(µ)

for j ∈ {t, b}.

When ρ ̸= ρ′, the allocation ρ̃ induces slack in the top employer’s obedience constraint. The

test allocation ρ̃ is constructed such that the mass of low ability applicants hired by the bottom

employer is preserved, and the mass of low ability applicants hired by the top employer is pushed

forward to higher types. As (1− µ) is decreasing, the test allocation ρ̃ leads to a strictly lower mass

of low ability applicants hired by the top employer relative to ρ̂. We can construct a perturbation

ρ′′ := βρ̃ + (1 − β)(1, 0, 1, 0) for β ∈ (0, 1). We can choose β so that the top employer’s obedience

constraint binds, leading to a contradiction as the allocation ρ′′ yields a greater revenue than ρ̂.

By the Glicksberg’s theorem, see Fudenberg and Tirole (1991), continuity of the first period

payoffs and compact choice sets implies the existence of an equilibrium with possibly mixed

strategies played by the employers.

A.8 Proof of Theorem 2

Theorem 2: Let F be uniformly distributed on [0, 1]. There exists constants C2 > C1 > 1/2 such

that if C1 ≤ u < −vl
vh−vl

< C2, then σ is part of an equilibrium only if σt(1) = 0, i.e. in equilibrium

the top employer sets standard st = 1 with zero probability.

Proof. Fix some mixed strategy profile σ = (σt, σb). First note that it is without loss to focus on

equilibrium where inf supp(σb) and inf supp(σt) are greater than the reservation expected ability
−vl

vh−vl
.

For uniform distribution on [0, 1] we get that 1−F(µ)
(1−µ) f (µ) = 1. The certifier’s objective (see equa-

tion (2) and section (A.6) ) can be represented by

E
[(

2µ

st
− 1
)

ρt
h(µ) + u

(
2µ

sb
− 1
)

ρb
h(µ)

]
(7)

If sup supp(σb) ≤ 2u
1+u , then for all sb ∈ supp(σb) and st = 1 the line u

(
2µ
sb
− 1
)

lies strictly above

the line 2µ − 1 for µ ∈ [0, 1]. From equation (7), we observe that if sup supp(σb) ≤ 2u
1+u and st = 1

then the certifier only allocates the applicant to the bottom employer. In particular, for st = 1 the

top employer gets a payoff of zero against the bottom employer’s strategy σb. This implies the

top employer plays st = 1 with zero probability as otherwise the top employer has a profitable

deviation by playing s′t = inf supp(σb) + ε for some small ε > 0.

Now consider σb such that sup (σb) >
2u

1+u . In perticular σb
( ( 2u

1+u , 1
] )

> 0. As sup supp(σb) >
2u

1+u the strategy σb puts positive probability on actions sb for which the lines u
(

2µ
sb
− 1
)

and 2µ− 1
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intersect. The point of intersection is given by µ = (1−u)sb
2(sb−u) . More generally if the lines u

(
2µ
sb
− 1
)

and 2µ
st
− 1 intersect on the interval [0, 1] then the intersection point is given by (1−u)stsb

2(sb−ust)
. Note that

the intersection point (1−u)stsb
2(sb−ust)

is strictly increasing in st.

The bottom employer never plays sb = 1 with positive probability in equilibrium, as sb =

1 yields a payoff of 0 to the bottom employer for any standards chosen by the top employer.

If σb(1) > 0 then the bottom employer’s total payoff is zero as the bottom employer must be

indifferent between all strategies in support of σb. Thus, a mixed strategy σb with σb(1) > 0 is

part of an equilibrium only if σt

(
−vl

vh−vl

)
= 1 as otherwise the bottom employer has a profitable

deviation of playing s′b = −vl
vh−vl

+ δ for some δ > 0. But the top employer never plays st =
−vl

vh−vl

with probability 1 in equilibrium. Thus σb(1) = 0.

Consider any sb ∈
( 2u

1+u , 1
)

and st ∈ [1 − ε, 1] for small ε > 0, point wise maximizing equation

(7) results in the following allocation

( ρt
h(µ), ρb

h(µ) ) =


(0, 0) µ ∈ [0, sb/2)

(0, 1) µ ∈
[
sb/2, (1−u)stsb

2(sb−ust)

)
(1, 0) µ ∈

[
(1−u)stsb
2(sb−ust)

, 1
]

The total mass of low ability applicant that can be pooled in under this point wise optimal alloca-

tion is ∫ 1

sb/2
(1 − µ) dµ

Using binding obedience constraint we get that the total mass of low ability applicants that is

needed for obedience is given by the following

1 − sb

sb

∫ (1−u)stsb
2(sb−ust)

sb/2
µ dµ +

1 − st

st

∫ 1

(1−u)stsb
2(sb−ust)

µ dµ

The first term is for low ability applicants required for bottom employer’s obedience constraint

and the second term is for the top employer’s obedience constraint. For st = 1, the pointwise

optimal test allocation is obedient whenever the following inequality holds

∫ 1

sb/2
(1 − µ) dµ − 1 − sb

sb

∫ (1−u)sb
2(sb−u)

sb/2
µ dµ > 0

Simplifying the above expression, we get

(2 − sb)
2 − (1 − u)2sb(1 − sb)

(sb − u)2 + sb(1 − sb) ≥ 0

Equivalently

(4 − 3sb)(sb − u)2 − (1 − u)2sb(1 − sb) ≥ 0
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The above is strictly greater than 0 when sb ≥ 2u
1+u and u > 1/2. Let C1 = 0.51 and u ≥ 0.51,

under this choice of u the pointwise optimal test allocation is obedient for all sb ∈
( 2u

1+u , 1
)

and

st = 1. Moreover, because of the strict inequality for small enough ε > 0 the pointwise optimal

test allocation is obedient for all sb ∈
( 2u

1+u , 1
)

and st ∈ [1 − ε, 1].

To complete the proof, we will show that there is some value of −vl
vh−vl

> C1 such that deviating

from st = 1 to st = 1 − ε is profitable for the top employer against any bottom employer standard

sb ∈
( 2u

1+u , 1 − ε
)
, where ε > 0 is small enough. Combining this with the fact that σb

( ( 2u
1+u , 1

) )
>

0 implies that in equilibrium σt(1) = 0.

Consider sb ∈
( 2u

1+u , 1 − ε
)
, where ε > 0 is small enough such that the point wise optimal test

is obedient and σb( [1− ε, 1] ) = 0. The requirement σb( [1− ε, 1] ) = 0 is an equilibrium restriction

on σb; we will verify this formally after constructing the top employer’s profitable deviation. If

the top employer deviates from st = 1 to st = 1 − ε then the intersection point of the coefficients

in front of ρt
h and ρb

h in equation (7) shift from (1−u)sb
2(sb−u) to (1−u)(1−ε)sb

2(sb−u(1−ε))
. As (1−u)sb

2(sb−u) > (1−u)(1−ε)sb
2(sb−u(1−ε))

, the

optimal mechanism allocates more applicant types to the top employer under st = 1 − ε when

compared to st = 1.

Let H0, L0 represent the mass of high and low ability applicants allocated to the top employer

by the pointwise optimal mechanism for st = 1, respectively. By obedience L0 = 0 and as argued

previously

H0 =
∫ 1

(1−u)sb
2(sb−u)

µ dµ

Let H1, L1 be the additional mass of high and low ability applicants added to the top employer,

respectively, when st = 1 − ε. By binding obedience, we get

H0 + H1

H0 + H1 + L1
= 1 − ε

=⇒ L1 =
ε

1 − ε
(H0 + H1)

Combining the above, we get that the expected ability of the additional applicants added to the

top employer is given by
H1

H1 + L1
=

(1 − ε)H1

H1 + εH0

By pointwise maximization of equation (7) we get the following

H1 =
∫ (1−u)sb

2(sb−u)

(1−u)(1−ε)sb
2(sb−u(1−ε))

µ dµ

=
(1 − u)2s2

b
8

[
1

(sb − u)2 − (1 − ε)2

(sb − u(1 − ε))2

]

47



For st = 1 − ε to be a profitable deviation the expected ability of the added applicant must exceed

the reservation expected ability. To prove the theorem, it suffices to show that there is a constant

C2 such that C1 < C2 ≤ (1−ε)H1
H1+εH0

.

We can evaluate (1−ε)H1
H1+εH0

at ε = 0 using L’Hôpital’s rule. This yields

−H1 + (1 − ε) d
dε H1

H0 +
d
dε H1

∣∣∣∣
ε=0

Plugging in d
dε H1 =

(1−u)2s3
b(1−ε)

4(sb−u(1−ε))3 and values of H0 and H1 we get the following

−H1 + (1 − ε)
d
dε

H1

∣∣∣∣
ε=0

=
(1 − u)2s3

b
4(sb − u)3

and

H0 +
d
dε

H1

∣∣∣∣
ε=0

=
1
2
+

(1 − u)2s2
b(sb + u)

8(sb − u)3

Putting together, we get

−H1 + (1 − ε) d
dε H1

H0 +
d
dε H1

∣∣∣∣
ε=0

=
2(1 − u)2s3

b
4(sb − u)3 + (1 − u)2s2

b(sb + u)

Inverting the expression above, we get the following

1
2
+

u
2sb

+
2(sb − u)3

(1 − u)2s3
b

Taking the derivative with respect to sb yields

u
12(sb − u)2 − (1 − u)2s2

b

2(1 − u)2s4
b

The expression above is positive for sb ≥ 2u
1+u , thus 1

2 +
u

2sb
+ 2(sb−u)3

(1−u)2s3
b

is increasing in sb. Plugging

in sb = 1 we get that the above expression is upper bounded by 1.8 as u ≥ C1 > 1/2.

This implies that −H1+(1−ε) d
dε H1

H0+
d
dε H1

∣∣∣∣
ε=0

> 0.55. By continuity of (1−ε)H1
H1+εH0

in ε and the intermediate

value theorem we get that for small enough ε > 0 the expected ability of additional applicants
(1−ε)H1
H1+εH0

≥ 0.53 > 1/2. We establish the theorem by setting C2 = 0.53 and C1 = 0.51.

To finish the proof, we need to show that the equilibrium restriction on the support of σb is

valid. For this, we will show that in equilibrium sb = 1 ̸∈ supp(σb). In other wrds we show that

for small enough ε > 0 the equilibrium strategy σb assigns zero probability to the set [1 − ε, 1], i.e.

σb ( [1 − ε, 1] ) = 0.

Consider some sb ∈ (1 − ε, 1], by the point wise maximization of equation (7), we observe

that the bottom employer gets zero payoff against any st ≤ sb. Thus, we only need to show
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that the bottom employer has a profitable deviation by playing 1 − ε instead of sb against any

st > sb. Given some hiring standards sb ∈ (1 − ε, 1) and st > sb for small ε > 0, the point wise

maximization of equation (7) and binding obedience constraints yield the following payoff to the

bottom employer

Ub(ρ) =

(
vh + vl

1 − sb

sb

)
E
[

µρb
h(µ)

]
= (vh − vl)

(
1 +

vl

sb(vh − vl)

) ∫ (1−u)stsb
2(sb−ust)

sb/2
µ dµ

When −vl
vh−vl

< sb the term
(

1 + vl
sb(vh−vl)

)
is positive. By differentiating

∫ (1−u)stsb
2(sb−ust)

sb/2 µ dµ with respect

to sb we see that the expression is decreasing in sb. Thus, when the bottom employer lowers

its standard from sb to 1 − ε, the certifier allocates additional mass of applicants to the bottom

employer. The deviation is profitable if and only if the expected ability of new applicants allocated

to the bottom employer exceeds −vl
vh−vl

.

Let N0, M0 represent the mass of high and low ability applicants that are allocated to the

bottom employer given standards (st, sb), respectively. From point wise maximization of equation

(7) and binding obedience constraint, we get the following

N0 =
∫ (1−u)stsb

2(sb−ust)

sb/2
µ dµ

and

M0 =
1 − sb

sb
N0

Similarly, for standards (st, 1 − ε) let N1, M1 be the additional mass of high and low ability appli-

cants that are allocated to the bottom employer, respectively.

N1 =
∫ sb/2

(1−ε)/2
µ dµ +

∫ (1−u)(1−ε)st
2((1−ε)−ust)

(1−u)sbst
2(sb−ust)

µ dµ

and
N0 + N1

N0 + M0 + N1 + M1
= 1 − ε

=⇒ M1 =

(
ε

1 − ε
− 1 − sb

sb

)
N0 +

ε

1 − ε
N1

Thus, the expected ability of the additional mass of applicants added to the bottom employer is

given by
N1

N1 + M1
=

N1(1 − ε)sb

(sb + ε − 1)N0 + sbN1

Fix any sb ∈ (1 − ε, 1). To show that the bottom employer has a profitable deviation by playing

1 − ε, it suffices to show that the right-hand side of the above expression is greater than −vl
vh−vl

for

all st > sb and sufficiently small ε > 0.
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The expected ability of the additional applicants can be bounded below by some constant

0 < C′ < 1 and some small ε > 0 if the following holds

N1(1 − ε)sb

(sb + ε − 1)N0 + sbN1
≥ C′

After rearranging, we get

(1 − ε − C′)N1 ≥ C′
(

1 − 1 − ε

sb

)
N0

Differentiating N1 with respect to st shows N1 is increasing in st as s3
b

(sb−ust)3 is decreasing in sb.

Differentiating N0 with respect st shows that N0 is increasing in st as (1−u)stsb
2(sb−ust)

is increasing in st. By

plugging in st = sb for N1 and st = 1 for N0 we get the following implication

(1 − ε − C′)
∫ (1−u)(1−ε)sb

2(1−ε−usb)

(1−ε)/2
µ dµ ≥ C′

(
1 − 1 − ε

sb

) ∫ (1−u)sb
2(sb−u)

sb/2
µ dµ

=⇒ (1 − ε − C′)N1 ≥ C′
(

1 − 1 − ε

sb

)
N0

As
∫ (1−u)sb

2(sb−u)

sb/2 µ dµ is decreasing in sb the first inequality above holds for any constant 0.6 > C′ > 0 if

the following stronger condition holds

(0.4 − ε)
∫ (1−u)(1−ε)sb

2(1−ε−usb)

(1−ε)/2
µ dµ

/[(
1 − 1 − ε

sb

) ∫ (1−u)(1−ε)
2(1−ε−u)

(1−ε)/2
µ dµ

]
≥ C′

Notice that both the numerator and the denominator of the expression on the left-hand side tend to

zero as sb → 1 − ε. Taking the derivative with respect to sb of the numerator and the denominator

of the fraction on the left-hand side of the inequality above.

∂

∂sb
(0.4 − ε)

∫ (1−u)(1−ε)sb
2(1−ε−usb)

(1−ε)/2
µ dµ = (0.4 − ε)

(1 − u)2(1 − ε)3sb

4(1 − ε − usb)3

and
∂

∂sb

(
1 − 1 − ε

sb

) ∫ (1−u)(1−ε)
2(1−ε−u)

(1−ε)/2
µ dµ =

(1 − ε)3

8s2
b

( (
1 − u

1 − ε − u

)2

− 1

)
The derivative of the numerator is increasing in sb and the derivative of the denominator is de-

creasing in sb. This implies the following inequalities

∂

∂sb
(0.4 − ε)

∫ (1−u)(1−ε)sb
2(1−ε−usb)

(1−ε)/2
µ dµ ≥ (0.4 − ε)

1 − ε

4(1 − u)

and
∂

∂sb

(
1 − 1 − ε

sb

) ∫ (1−u)(1−ε)
2(1−ε−u)

(1−ε)/2
µ dµ ≤ (1 − ε)

8

( (
1 − u

1 − ε − u

)2

− 1

)
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By L’Hopital’s rule and the two inequalities above, we get the following

lim
sb→1−ε

(0.4 − ε)
∫ (1−u)(1−ε)sb

2(1−ε−usb)

(1−ε)/2 µ dµ(
1 − 1−ε

sb

) ∫ (1−u)(1−ε)
2(1−ε−u)

(1−ε)/2 µ dµ

≥ 2(0.4 − ε)(1 − ε − u)2

(1 − u)(2 − ε − 2u)ε
> 0

The right-hand side blows up for ε close to zero. Thus, the necessary inequality, (1 − ε − C′)N1 ≥
C′
(

1 − 1−ε
sb

)
N0, holds for some 0.6 > C′ > C2 = 0.53 when ε is small enough. This establishes

the required restriction on the support of σb, in equilibrium, and concludes the proof.

Remark. The argument in proof of Theorem 2 can be extended to show a slightly stronger claim

that in equilibrium st = 1 ̸∈ supp(σt). I do not pursue this in the interest of brevity.
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