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1 Introduction

In decision-making, individuals often allocate limited resources to gather information, while anticipating
the arrival of future information. This note how the anticipation of future data influences decision makers’
immediate incentives to acquire information. The decision maker seeks to learn an uncertain state using
two signals: the anticipated future information and the signal chosen today. These dynamics manifest in
various contexts, such as:

1. An investor deciding on resource allocation among different economic sectors while awaiting an up-
coming Federal Reserve announcement.

2. A doctor chooses between diagnostic tests while still waiting for results from a previously conducted
test.

This note aims to highlight some interesting properties associated with the incentives to acquire infor-
mation in such choice problems and how it is related to the notion of complementarity between informa-
tion. By restricting the choice of information between Blackwell equivalent signals, we isolate the effect of
anticipated information on the present-day incentive to acquire information.

The value of a signal today depends on all the information a decision maker expects to learn before
making a decision in the future. Complementary information can be described by the positive dependence
of the value of the signal and the presence of additional information. In order to study this dependence,
we need an appropriate concept for the value of information while anticipating future information. We
provide a new definition of complementarity based on this, in terms of the joint correlation structure of the
signals and the uncertain state. We show how existing notions of complementarity of information might
overlook information that otherwise (and intuitively) seems complementary. Most of the paper considers
comparisons that are robust to preferences; thus, the results and insights apply to many different economic
environments.

2 Literature Review

Some previous works on the complementarity of information and the effect of anticipated information on
present-day incentives:

Complementarity between signals has been studied in (2013). They study how having
a signal improves the marginal value of having another signal. Similar to our setting, they also consider
choices that are robust to the preferences and beliefs of the decision-maker. We provide a new definition
of complementarity that is neither implied by nor implies the definition in ( ) (henceforth
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referred to as BHK13). We discuss this in detail in section 6.1. ( ) extends the BHK13’s
notion of complementarity to a dynamic environment. They study how access to a signal improves the
marginal value of having access to another signal.

Our temporal choice of information resembles the setting of ( )- They also consider the
choice between signals in the presence of an additional signal. Their setting is robust to the preferences and
beliefs of the decision-maker as well as the nature of additional information that the DM possesses (or will
possess). In contrast, we fix the structure of the decision maker’s additional information; this allows us to
study complementarity, which otherwise would not be possible in the model of ( ).

3 Motivation

In this section, we provide motivation for the type of information acquisition problems considered in this
paper.

3.1 Medical Testing

Let the uncertain state represent presence (P) or absence (A) of a certain disease (X = {P, A}). There are
two decision makers Bob and Kevin. Bob has no history of the disease and assigns a prior q5(P) = % On
the other hand, Kevin has a family history of the disease and assigns prior gx(P) = a € (},1). Consider
the situation when Bob gets a free medical screening Y, whereas Kevin does not get this screening. The
outcome of that screening is Y = y and it increases Bob’s belief about the likelihood of him having the
disease from 1 to «. Additionally, Bob and Kevin have the choice to get tested for the disease using a test Z
at some cost ¢ > 0.

The outcome Y = y increases the value of the additional signal Z if Bob is willing to pay at least as
much as Kevin for the test Z. For example, if the medical screening Y detects the disease for Bob and there
is a test Z available such that whenever Y incorrectly detects the disease, the test Z is very unlikely to also
incorrectly detect the disease. Then Bob is willing to pay more for the test Z compared to Kevin who has
the same beliefs as Bob about the likelihood of having the disease. Bob values the signal Z more due to its
correlation with the signal Y.

We say that the screening Y strongly complements Z if for all outcomes of Y, the value of test Z for
Bob is greater than the value of test Z for Kenvin. We say that the screening Y complements the test Z if on
average a DM who observes the realization of Y values Z more than another DM who doesn’t observe Y but
has the same beliefs about the state as if he saw Y. A consequence of this is that if Y is a cheap screening and
Z is an expensive medical test, then complementarity would imply providing free screenings Y increases
the demand for the more expensive medical test Z, leading to higher profit. These ideas are formalized in
example 1.

3.2 Delay and Investment

Ann is an investment manager who is interested in the optimal portfolio X. She is waiting for an impor-
tant announcement from the Federal Reserve about interest rates, (Y). She is deciding whether to buy a
detailed financial report (Z) today or delay the purchase until after the announcement. Having access to
the report before the announcement lets her react fast to the news. If she delays, she might miss out on
some good investment chances because markets can change fast after such announcements. Hence, she in-
curs some delay costs. The report is priced today based on the market’s expectations of the announcement,
but if she waits until after the announcement, the report is priced according to the market’s reaction to the
announcement.

So, Ann has two options. She could buy the report today, expecting it to be more valuable and thus more
expensive after the announcement. Or choose to delay the purchase, if she thinks the delay cost is smaller
relative to the flexibility she gains by making her purchase decision contingent on the announcement.



In making her decision, Ann will think about the losses she could face. If she buys today, her loss is the
cost of the report. If she waits, her loss could be the higher price for the report plus any good investment
chances she missed. The announcement is a substitute for the report if no matter what the announcement
turns out to be, the market price of the report is greater than her willingness to pay for it. In this case, even
for arbitrarily small delay costs, Ann is willing to acquire the information today. We come back to this in
section 9.1.

4 Model

Fix a probability space (Q), F, Pr). On this space define X, ), Z; Z, valued random variables X, Y, Zy, Z,
respectively!'. We refer to Y, Z1, Z, as signals. We will use A(A) to represent the space of all probability
distributions on some finite set A. The decision maker’s preferences are represented by bounded positive

u: X x D — [0,00), whered € D represents a decision?. In particular, we assume arg max u(x, d) exists for
deD
each x € X. The choice problem is described by the following sequence ( figure 1)

1. Choice between random variables Z; and Z,.

2. If Z; was chosen then observe realization of bivariate random variable (Y, Z;).

3. Let® D be a finite decision space, after observing (Y = y, Z; = z) the decision maker chooses d €
argmaxE[u(X,9)|Y =y, Z; =z].
€D

Choose between Observe realization of Choose d € D

Zyor Zy (Y: Zi)

Figure 1: Timing

Let p represent the joint pmf* of (X,Y, Z1,Z;). We refer to the marginal distribution of X, px as the
prior. In later parts, we use g to represent this prior. A decision problem is defined by the triple (px, u, D).
Often we will suppress dependence on the decision space and write decision problems in terms of (px, u).
With finite X, most results hold if we restrict attention® to the uniform prior px = ‘17‘ We define the value
of a collection of signals relative to a decision problem, formally value function assigns a real number to the
family of conditional pmf {p(.|X = x) € A(S] X ... X S);x € X'} for each decision problem (g, u, D).

1We assume X, Y, and Z; are finite subset of R (unless stated otherwise).

2We assume the decision space D is convex and compact. Without loss of generality, we assume that this space only contains
undominated decisions.

3We restrict attention to pure strategies for clarity.

4We restrict attention to joint distributions where each marginal has full support.

5We use Blackwell’s notion of comparison in ( ). It is shown that a signal S is more informative than S’ if and only
if under the uniform prior, the distribution of posteriors generated by S is a mean preserving spread of the distribution of posteriors
generated by S'.



Definition 1. For the decision problem (g,u, D) the ex-ante value of a collection of random variables
(S1,..., Sg) is given by

Vau(S1,..,Sk) = Ep {g'gaz;(} Ey[u(X,d)|S1,..., S¢] | — {1;16%} E,u(X,d)]

Where p € A(X x 81 X ... X ) represents the joint distribution of (X, Sy, ..., S¢), with the marginal proba-
bility px = g being determined by the decision problem.

The value can be interpreted as the maximum amount a decision maker is willing to pay to learn the
realization of Sy, .., S¢.

Definition 2. A collection Sy, Sy, ..., S of random variables is more valuable than another collection S}, S}, ..., S},
if for any decision problem (g, u) we have:

Viu(S1, s Sk) = Voru(S}, v Shy)

The ordering of being more valuable in the above sense is from ( ). In particular, it is
shown that for S; : O — S; and S/ : O — S/. The collection Sy, Sy, ..., Sk is more valuable than S, S/, ..., S},
if and only if there is a mapping M : S; x .., xS — A(S] x §; x ... x S},) such that for all x € X
we have Yog . «s, Pr(s1, ..., s¢|X = x)M(s}, ..., 5y, [s1, ., 8x) = Pr(sy, ..., s,/ X = x). We will write this as
($1,52,..,Sk) =B (51,52,...,Sm), and refer to this partial order as the Blackwell order. There are many
characterizations and generalizations of this order °.

In what follows we will restrict the choice between signals Z1, Z, that are Blackwell equivalent (Z; ~p
Z5). We make this restriction to isolate the effect of the signal Y on the choice between Z; and Z;. As
Blackwell equivalence will imply that a decision maker with arbitrary utility (only dependent on X and
d) and prior (i.e. the marginal probability of X, px) will have the same value Vy, ,,(Z1) = Vpyu(Z2). The
indifference in value of Z; and Z, in the absence of Y implies that the preference of signal Z; over Z_; is
due to anticipation of learning Y in the future. Assuming that Z; ~p Z; is the same as assuming equality of
distribution of posteriors induced by signals Z; and Z;. Formally consider the random variables X, Sy, S».
Define the following:

Pr(S; =s|X =x)
Yy Pr(S1 =s|X=x')
Pr(S; =s|X =x)
Yy Pr(Sy; =s|X =x')
Then the posterior belief on X (assuming uniform prior) after observing signals S; and S, are given by

random variables t1(S1) and #,(S;). From theorem 25.4 and corollary 25.5 in ( )Y we have the
following conclusion:

i'1:81—>A(X),'SI—>{ ;XGX}

t2:82—)A(X),‘SI—>{ ;XGX}

Fact 1. The following are equivalent:
1. S~ Sy

2. t1(S51) =4 12(52)
The following lemma will be useful in later sections

Lemma 1. For random variable Sy, Sy and full support prior g € A(X) if V4, (S1) > Viu(S2) for all bounded
positive utility u then S; =g S».

The equivalence stated above relates having less value of information to being reproducible from the more valuable signals by
some randomization procedure. For other characterizations see ( ), ( )
7The result was originally proved in ( ).



Proof. The result follows from noting that transforming the utility function state-wise has the same effect
as re-weighting the prior belief. Fix two full support priors 4,4 € A(X). Define a map 7 from the set

of positive bounded utilities to itself such that y(u) : (x,d) — %u(x, d). It is easy to check that 7 is a
bijection. Now, note that for any strategy ¢; : S; — D and utility u : X x D — [0, c0) we have

Y ) u(x, 9i(s))Pr(S; = s|X = x)q Z Y v(ulx, 9i(s)))Pr(S; = s|X = x)q'(x)
S; xeX S; xeX

Thus Vg,u(S1) > Vou(S2) for all u implies that Vi () (S1) = Vi ,(,)(S2) for all u. As gamma is a
bijection we get that Vj ,(S1) > Vi ,(S2) for all u. This holds for any full support prior 4'.

When 4’ dosen’t have full support on A(X'), we define ' from the set of positive bounded utilities to
itelf such that o/(u) : (x,d) — ;/((f())u(x, d) when x € supp(q’) and 79/ (u) : (x,d) — 0 when x ¢ supp(q’).
Thus 9/ is a bijection from the set of positive bounded utilities that are zero outside support of g’ to itself.
Now, note that for any strategy ¢; : S; — D and utility u : X x D — [0, 00) such that u(x,.) = 0 whenever
x ¢ supp(q’) we have

Y ) ulx gi(s))Pr(Si = s|X = x)q E Y 7 (u(x, 9i(s))) Pr(S; = s|X = x)q'(x)

S; xeX S; xeX

Thus Vg,u(S1) > Vou(S2) for all u implies that Vi 1,y (S1) = Vi 14 (S2) for all u which are zero outside
the support of . As 7' is bijective on the restricted set of utilities this implies Vi ,(S1) > Vs ,,(S2) for all u
which are zero outside the support of 4. As the decisions ( and hence the value of a signal) don’t depend
on the states outside the support of the prior we have Vi, (S1) > Vs ,(S2) for all u. This concludes the

proof.
O

Note that the above proof extends to the case when the comparison is restricted to some class of utilities
U, as long as the bijection y and 7 can be appropriately defined for /. In particular the proof extends to
the class of IDO preferences defined in 8.

5 Definitions

Based on the choice problem described in section 4 Z; is chosen over another signal Z_; if the value of
having signals (Y, Z;) is more than the value of having joint signal (Y, Z_;). Let U represent some arbitrary
class of bounded positive utility # : X x D — [0,00). Let px € A(X) be the marginal distribution of
X. A U—decision problem is a triple (px, u, D) where utility u € Y. Whenever we refer to the set of all
possible bounded utilities, we drop the dependence on U/. For the following definitions fix the conditional
distribution® pix € A(Y x Z) of Y, Z given X. Then the joint pmf p € A(X x Y x Z) for prior q is given by
p(xy,z) = q(x)p(y, 21X = x).

Definition 3. Y (U - ) complements Z; more than Z; if for all (/—) decision problem the ex-ante value of
signals (Y, Z;) is greater than ex-ante value of signals (Y, Z;). Formally for all decision problems (g, u)

Vq,u (Y, Zl) Z Vq,u (Y, Z])

Written as Z; >y (tzﬁ)Zj.

Remark 1. The Z; =y Z; if and only if (Y, Z;) =5 (Y, Z;).

8For any y,z, p(y,z|X) = ]E[ly,Z(Y,Z)|X}



Two signals complement (substitute) each other if the presence of one signal increases (decreases) the
incentive to acquire another signal. In order to study complementarity between information due to antic-
ipation of future information we need to define an appropriate notion for value of information when the
decision maker anticipates to learn another piece of information before making his decision. Once the de-
cision maker learns some signal Y his beliefs about the state X change’. Thus in order to define the value
of signal Z we need a reference point, that accounts for this change in beliefs, against which we measure
the change in utility. To this end we require that the change in the value of the second signal be determined
with respect to the posterior induced by the realization of the first signal. Formally define the following:

For random variables X, Y, Z with the joint pmf p € A(X x Y x Z), where the marginal probability
of X is given by px = q. Giveny € supp(Y), let p, € A(X) be the pmf of X conditional on Y = y,

ie. py(x) = Pr(X =x|Y =y) = ¢ (y)j&)( %), Define a random variable Zy such that the joint distribution

re AX x Z)of (X,Zy)is givenby r(x,z) = Pr(Z =z, X = x|Y = y) = py(x)p(z|x,y). Then the value of
signal Z after observing the realization Y = y is given by (definition 1):

pr, Z max Z ,d)r(x|z)r(z) — max Z u(x,d)g(x)

z d€D} vy {deD} yex
= max u(x,d)p(z|x, x|y) — max u(x,d)p(x
Z{demxg (zlx, y)p(xly) {deD}xg (x,d)p(xly)

Similarly, the value of signal Z can be considered without taking into account the effect of observing
Y = y on the joint distribution of (X, Z). To this end, we consider the ex-ante value of signal Z when the
prior (marginal distribution of X) is given by p(.|Y = y) i.e. the distribution of X after observing Y = y.
Define the following joint pmf m € A(X x Z) of (X,Z) by m(x,z) = Pr(X = x|Y =y)Pr(Z =z|X =x) =
py(x)p(z|x). Following definition 1:

Vp,u(Z 2 max Z x,d)m(x|z)m(z) — max Z u(x,d)m(x)

= 1deD} reX {deD} reX
= max z|lx)p(x|y) — max x,d)p(x
;{dep}xg % dplep(xly) = max 3 ulxd)p(aly)

This represents the value of the signal Z to a decision maker who doesn’t observe the realization of Y,
but whose prior belief about X is as if the decision maker saw the realization Y = y. The change in the
value of signal Z after observing the realization Y = y relative to the value of signal Z for a decision maker
with the same beliefs about X is given by:

Iq,u (y; Y, Z) = pr,u (Zy) - pr,u (Z)

Using the ideas developed above, we describe two notions of complementarity between signals. First,
complementarity in a strong sense would require that no matter what realization of a signal is observed the
decision maker’s value of the second signal increases.

Definition 4. For two random variables Y, Z. Y is [/ —]| strong complement (strongly substitutes) of Z if for
ally € supp(Y), prior on g € A(X'), and utility u [/ —] we have I, (y; Y, Z) > (<)0.

Remark 2. The above condition describes complementarity in a strong sense. Knowing any realization of
one of the signals makes the other signal more valuable relative to a decision maker with the same beliefs
about the state.

Our definition of strong complements requires the inequality to hold pointwise for all realizations of
the signal Y, this can be seen as an interim notion of complementarity. As we are interested in ex-ante
choices, we require an ex-ante notion of complements. To this end, we can relax the pointwise inequality in
definition 4 to an average.

9Similar ways of defining the value of information are discussed in ( )



Definition 5. Two random variables Y, Z are said to be [/{—]| complements (substitutes) if for all y €
supp(Y), prior on px € A(X), and utility u [€ U] wehave Yy I, (v; Y, Z)p(y) > (<)O0.

An obvious conclusion of the definition is the following observation:

Observation 1. For two random variables (Y, Z), Y is [/ —] strong complement (substitute) of Z then (Y, Z)
are [/ —] complements (substitutes).

5.1 Binary example

Example 1. (Binary state and signals)

To fix the ideas, consider an example with binary state and signals. Let X = {P, A}, Y = {0,1}, Z =
{0,1}. The state X represents the presence (P) or absence (A) of a disease. The variables Y and Z; represent
diagnostic tests that detect the presence (1) or absence (0) of the disease. For simplicity, we assume that Y
and Z; have the same true positive and true negative rate p (with p > %). The decision maker is expected
to learn the results of the test Y at some future date. While awaiting the results of Y the decision makers
choose to conduct another test from Z;, Z, or Zg. The distribution of the joint experiments (Y, Z;) is shown
in figure 2.

11 10 01 00 11 10 01 00 11 10 01 00
P(2p-11-p1-p O ] P[ P2 p(l-p) pl-p) (1_p)z] P[ p 0 0 1-p
AL 0 1-p1-p 2p-1 AlLa-p? p-p) p1-p) p* All-p 0 0 p

(Yr Z]) (Y.u Z:z:} (Y: Zz}

Figure 2: Binary example

It is easy to check that Z; =y Zy =y Zp, by constructing appropriate garbling matrices!'?. Intuitively,
Z, represents a test that will always give the same result as test Y, as the information in Z; is redundant
it has no value if Y is known. Z; represents a test, such that both Z; and Y can never have false positives
(and false negatives) simultaneously. In this sense, the test Y adds complementary information to Z; which
is not present in the tests individually. Finally, the tests (Y, Zz) can be interpreted as the same test being
repeated twice and each time has (unconditionally) independent diagnostic errors.

Remark 3. From the Blackwell ordering we can conclude for any prior g and utility u the following inequal-
ities hold: for any y € Y we have I, (y; Y, Z1) > I (y;Y,Zg) =02> Iyu(y; Y, Z2). In fact, the inequalities
can be strict, to see this consider the decision problem with a uniform prior g = (1/2, 1/2) on X = {P, A}
and utility given by u(P,d;) = u and u(A,d,) = 1 — u and zero otherwise. Let p = % and u = 2. For

Y = y = 1 the posterior belief on X is given by (p,1 — p). Then

Iq/u(l;Y,Zl) = %u—b— 1(2]0 —1)(1—u)— %pu — %p(l —u) = %(1 —p)(Bu—1)>0

3 3
and
2 2 1 -2
LuLY,Z))=-u——=pu—=p(l—u)=—<0
g 2) 3 37 3P( ) 45
10 0 O 1 0 0 0
10The garbeling matrices (1) 8 8 (1) & 16p g 2 1— suffice
0 0 0 1 0 0 o0 1



Remark 4. For the bivariate signal (Y, Z1) we observe that the conditional distributions p(Y, Z|X = P) and

P(Y,Z|X = A) don’t have the same support. This is not necessary for the ordering, to see this consider

p= % and observe that

1 0 0 O
2 4 4 1 1> 9 o0 4 2 2 1
(Trre)lsss=00839
5 15 15 5 6 6 9 9 9 9
0 0 0 1
Later we use Z; to discuss our definitions in the context of ( ), If we replace Y, Z1 with

the above example the main insights are the same.

Remark 5. From Z, we see that in some situations it’s possible to have signals that provide no additional
information even when individually the signal is informative. More specifically when is it possible that for
a bivariate signal (Y ~p (Y,Z)) or (Z ~p (Y,Z))? Our proposition 3 shows that this is possible only if
Y b B ZorZ EB Y.

Similar to the minimal signal discussed above, another extreme is bivariate signal (Y,Z) such that
(Y,Z) ~p X, meaning that the combined signal (Y, Z) is fully informative. Apart from the trivial case
when one of the signals Y or Z is fully informative, we characterize these maximal signals in remark ??.

Remark 6. If Y and Z are conditionally independent given X, then knowing one doesn’t improve under-
standing or change beliefs about the other once the state X is fixed. The signal (Y, Z%) represents this
situation.

This example fits in with the intuition that positive correlation decreases and negative correlation in-
creases the informativeness of the joint signal. A natural question is whether this intuition holds more
generally. As we show in example 2 this is in fact false.

5.2 Linear Normal Model

Example 2. (Linear normal signals with unknown mean)'!

This example will look at linear normal experiments. Let X represent the unknown mean of normally

distributed random variables Y and Z with variance 02 and 03 respectively. Let the joint signal (Y, Z),
2
be given by (Y, Z|X), ~ N ( <X> , ( %Y p(Tythz) ), here the correlation coefficient p is used for
X poyoz 05

indexing. Let X, represent the correlation matrix of (Y, Z),. Following (
" we get that (Y, Z),, =3 (Y,Z), iff 172,11 > 17,1

From figure 3 we can see that when Z and Y are Blackwell equivalent (i.e. have the same variance)
17}2/+(7%72p0’yl7’z

vz (1-p%)

higher correlation leads to a lower complementarity of information. On the other hand, when Z and Y have
different variances, the value first decreases with the correlation coefficient and then increases.

)12 13

then the value is decreasing in p. Note that lTZFjll = . This indicates for the same variance

"For this example we may relax the finitness assumption on X, Y, Z

12 (1974) show that for unknown parameter f signal S4 ~ N (AB, I) Blackwell dominates Sg ~ N (BB, I) if
and only if ATA — BTB is positive semi definite. For positive definite £ 4 and , the signals S4 ~ N (AB,X4) and Sy ~ N (BB, Zg)
are Blackwell equivalent to 54 := (U§)~'S4 ~ N((U5)"TAB,T) and Sp := (U})~'Sp ~ N ((UF) BB, I) respectively. Where 2,
and Xp uniquely (up to unitary transformations) decompose into UAT U, and Ug Up respectively. Then S 4 Blackwell dominates S if
and only if ATE 7' A — BTE;!B is positive semi-definite.

13The above requires the linear normal experiments to be regular (i.e. ker(X) C ker(AT)), which holds in our case when p € (—1,1)
and the variances are non-zero.

4The Blackwell comparison of the linear normal model is equivalent to the comparison between covariances of the best linear
unbiased estimators. For linear normal experiments A and B. A Blackwell dominates B if and only if Cov(fp) — Cov(f4) is positive
semidefinite. Interested readers can see ch 8 of ( ).
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Figure 3: Gaussian example

Remark 7. Similar behavior at the extreme correlation (i.e. |p| = 1) is true for more general linear signals.
In particular consider signals Y, Z to be given by:

Y=X+e¢
Z=X+7

Where 77 and ¢ are zero mean noise terms with variance 02 and ¢2 respectively. Let p represent the cor-
relation coefficient between Y, Z. Then |p| = 1 corresponds to 1 = p%e almost surely'®. Thus whenever

p = —1 the above linear equations give unique solution X = % Whereas when p = 1 the system of
equation determine X only if oy # 0.

From the example, we see that the intuition that a positive correlation between signals leads to less
information isn’t always correct. When considering joint signals, such as Y and Z, about an unknown
variable X, the information they offer can be divided into two channels. Firstly, the direct insight that each
signal individually provides about X. Secondly, there’s the indirect insight due to the relationship between
the signals. In the next section, we study the relation between the correlation structure of the signals and
their informativeness.

6 Complements

When two pieces of information are conditionally independent, they are effectively separate sources of
information about X. This separation is what leads to the lack of complementarity. Example 1 demonstrates
this, in this section, we want to generalize the example. To this end, we can construct the random variable

E[(y —ae)*] = 0 when |o| = 1and a = pgZ.



Zz in the following way. For any joint distribution p of (X,Y,Z) we can define the joint distribution p
of (X,Y,Zg) such that p(x,y,z) = p(x,y)p(z|x) = p(x)p(y|x)p(z|x). By construction, Zg is Blackwell
equivalent to Z and Z L Y|X

Proposition 1. The pair of random variables (Y, Z) are complements (substitutes) as per definition 5 if and only if
Z =y (2y)Ze.

Proof. This follows from noting that for any decision problem (g,u) we have V,, (Y, Z) — V,; (Y, Zg) =
Yy Iq,u(y/’ Y, Z)p(y). -

Remark 8. This shows that our definition of complementarity is symmetric, meaning Y is a complement of
Z if and only if Z is a complement of Y. To see this observe that for any decision problem (g, u) we have
VouY, Zg) = Vou(Yo, Z) as (Y, Zz|X) =4 (Yo, Z|X) by construction'®. Thus V,,(Y,Z) > V,.(Y, Zg) if
and only if V; (Y, Z) > V;u (Yo, Z).

Remark 9. Referring back to example 2 we see that for fixed variances p = 0 corresponds to Zg, in figure 3
value for which the curve lies above (below) the dotted line are complements (substitutes).

6.1 Relation to BHK(2013)

(2013), defines two signals to be complementary if the marginal value of a signal is higher
when the other signal is present. In this sense, information is treated like a physical good.

Definition 6. Signals Y and Z are complements (substitutes) if for all preference 1 and priors px(= q).

VL]/M(Y/ Z) - Vq,u(Y) 2 (S)VQ,M(Z) - Vq,u(g)

In contrast, our definition of complements is defined in terms of the choice between signals relative to

another signal. By restricting choice to Blackwell equivalent experiments we have
VoY, 21) = Vou(Z1) = Vigu(Y, Z2) = Vou(Z2) “EE2 Vo (Y, Z1) = Vyu(Y, Z0)

Remark 10. The notion of complementarity introduced in definition 5 is substantively different than the
notion of complementarity introduced in ( )- To see this we recall example 1 the signal Z;
was preferred (in >y order) over Zg. This implies under definition 5, Z; and Y are complements. From
proposition 3 of ( ), the signals Y and Z; are not complements, as there is no "meaning
reversal"l”1® which is necessary (and also sufficient in binary states) for the condition in definition 6 to hold.
More directly, ( ) observe that the requirement of definition 6 is equivalent to the ordering
of auxiliary signals Sg and Sc. Where Sg represents a signals which takes value of Y with probability 1 2 and
Z with probability 3. The signal Sc represents a signal that takes value of (Y, Z) with probablhty 5 and

is uninformative signal @ with probablhty 5. Then definition 6 is equivalent to SC =5 S s. This mean for
example 1 with Z = Z; we get:

s . ( s 31-p  3p  301-p)
SS'<2(12—P) TR TR )

16For any joint distribution p of X,Y, Z. The joint distribution p’ of (X, Y, Zy) is such that p’(x,y,z) = p(x)p(y|x)p(z|x). Similarly,
the joint distribution p” of (X, Yy, Z) is such that p” (x,y,z) = p(x)p(y|x)p(z|x). Thus the signals (Y, Zz) and (Yg, Z) are Blackwell
equivalent

7For any prior px, p(P|Y =1,Z =1) > px(P) and p(P|Y = 0,Z = 0) < px(P).

18Roughly speaking, for binary states, meaning reversal requires signals that individually move the decision maker’s beliefs into
one direction, if received together move the decision maker’s beliefs into the opposite direction. See ( ) for the general
definition.
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< (Yep-1) la-p la-p 0
5C'<2 0o fa-p fa-p tep-1 >

Under the following decision problem, the value of Sg is greater than Sc. Let D = {dy,d,}, and

u(dy, P) = %, u(d, A) = % and zero utility otherwise. Then for uniform prior on X = {P, A}, and p = 2

NI=N—

the value of signal Sg is greater than the value of S¢ . Similar conclusions hold for remarks 4 and ??.

2
Remark 11. From example 2 we have (Y, Z|X), ~ N ( (X) , ( %Y p(Tythz) ) In the linear normal
X poyoz 05

model for p approaching —1, the value of the combined signal is increasing. Consider for instance the
limiting case when Y, Z are together fully informative about X (i.e. (Y,Z) ~p X). Let X = {x1 = 1,x, =
—1}. Consider the decision problem with a uniform prior and utility such that u(xy,d;) = u(xp,dp) =1
and 0 otherwise. In this case the value of signal Sc is 0.25. If we let 07 = oy < 1.48, then the value of
Ss > 0.25. Thus certain perfectly correlated linear normal signals are not complements under definition 6.

The above remarks show that studying the complementarity of information based on the marginal in-
crease in value of a signal in the presence of another signal isn’t able to account for complementarity in-
duced by anticipation of information. In particular, definition 6 is too narrow to capture behaviourally
relevant ways in which two signals can "add to" each others” information.

6.2 Strong Complements

In this section'”, we will present an equivalent condition for signals to strongly complement each other
as per definition 4. Let p be the joint distribution of (X,Y,Z), then define a family of random variables
{Zy}yey taking value in Z such that Z, is defined as in section 5.

Proposition 2. For two random variables Y, Z. If for ally € Y we have Z,, =p Z then Y is a strong complement of
Z as per definition 4. The converse holds when ty (y) has full support in X for everyy € ).

Proof. (Sketch)

Fix arbitrary y € V.

The first statement follows by noting that Z, =p Z then for any decision problem the value of Z,, is
greater than Z. Formally V, ,(Z,) > V;(Z) for every decision problem (g,u, D). Consider the case when
q = py, then Vp, u(Zy) > Vp, u(Z) for every (u, D). Finally recall that I, (y; Y, Z) = Vp, u(Zy) — Vp,u(Z).

For the second statement let Y be a strong complement of Z. Thus for all decision problems (g, u) we
have I,,(y;Y,Z) > 0. In particular, for uniform prior g = ﬁ wehave I, (y,Y,Z) = Vty(y),u(zy) —

Viy)u(Z) = 0 for every positive bounde?l utility. By ass‘umption ty(y) has full support on |X| thus by
lemma 1 we have that Z, =p Z. As the choice of y was arbitrary we have proved the result.

1
W,M

O

Remark 12. For the linear normal models (see example 2), definition 5 and 4 are equivalent?’. To see

2
this consider the signals (Y, Z|X), ~ N ( (X> , < %y pUYZUZ ) ) Then the distribution of Z, is
X poyoz 05

given by N <X (1 - p%) + yp%, 0Z(1— pZ)). We can define a random variable Zy with distribution

o3 (1—p%)

0202 (1—p?) . = . . 2 .
N (X, (l:fysz , by construction Z, ~p Z,. Now note Z, =p Z if and only if oy —po )2 > 05. This
29v%% when p > 0and p <

2
oy+oy

20v9% when p < 0 (this always holds as the expression on right

equates to p > P

2 2 2 2
0s+05—200y 0, 0340
Y107 SPVIZ 1,7+ After some
YYz

is positive). From example 2 we see that (Y, Z) >p (Y, Zz) if and only if i) 2 o
YVZ

9Here we restrict attention to full support signals such that supp(p) = X x Y x Z.
*Here we assume that 1 — pgz # 0

11
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linear normal model complementarity (definition 5) is equivalent to strong complementarity (definition 4).
Combining the above with remark 11 we see that even complementarity in the stronger sense of proposition
2 isn’t sufficient for complementarity as per definition 6.

algebra, this equates to p > whenp > 0and p < when p < 0. Thus by proposition 1 for the

7 Redundant Information

As seen in example 1, we can construct signal Z; such that it has no value conditional on seeing the signal
Y. Thus once Y is known there is no value in knowing Z, in this sense Y acts like a substitute for Z,. This
happens as the signal Z; contains redundant information that is already contained in Y. In this section, we
expand on these ideas. In this section, the results are stated for full support priors; supp(px) = X.

Definition 7. A signal Z is redundant with respect to Y, written Y > Z if the following holds for all
preference u and priors g:

Vau(Y,Z) = Vau(Y)

Proposition 3. The following conditions are equivalent:

(a) Redundancy; Y > Z
(b) Sufficiency; Z L X|Y

(c) Minimality; Y =g Zand Z <y Z' forall Z' ~5 Z

Condition (b) highlights the role of correlation in information redundancy, it requires that once Y is
known, knowing Z doesn’t provide additional information about X. More precisely, the signal Y is a suf-
ficient statistic for Z, meaning the distribution of Z depends on X only through Y. Condition (c) relates
the notion of "higher" redundancy to being less desirable (substitutability) in the information acquisition
problem described above. The requirement that ¥ Blackwell dominated Z, says that in order for Z to be
redundant with respect to Y it is necessary that Y is at least as informative as Z. In particular proposition
3 shows the equivalence between the extreme case of information redundancy (conditional independence)
and minimal incentive to acquire information.

Proof. (Sketch)

It is easy to check that (b)) == (a) by noting that E[u(X,d)|Y =y, Z = z] = E[u(X,d)|Y = y] for all
u,deD,ycYandz e Z.
For (a) = (c) note that for any signal Z’, V; ,(Z’), V;u(Y) < V. (Y, Z') as the value of information is
non negative. Now , by redundancy we get V;,(Z) < V., (Y,Z) = Vyu(Y) < V4u(Y,Z'). This holds for
any preference and any prior on X, thus (c) follows.
Finally, we show (c¢) = (b). Let p represent the joint distribution of (X, Y, Z). By (c) we know Y >3 Z,
thus there exist a map x : Y — A(Z) such that p(z|x) = ¥y «(z|y)p(y|x). Define a random variable?! Z’
such that the joint distribution r of (X,Y,Z’) is given by r(x,y,z') = p(x)p(y|x)x(2'|y), then Z ~p Z’ and
Z' L X[|Y. In order to show (b), we assume for contradiction Z £ X|Y and then show that V; ,(Y,Z’) <
Va,u(Y, Z) for some prior g and preference 1 which contradicts Z <y Z'.
Let u, g be some arbitrary preference and prior on X.

Sguly) € argmaxaepE[u(X, d)|Y = y]

26 ( ) shows a similar statement for a more general setting.
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8 (y,2) € argmaxyepElu(X,d)|Y =, 2’ = 2]

Oqu(y, z) € argmaxgepBlu(X,d)|Y =y, Z = 2]

As Z' L XY, forallz € Z we have & ,(y,z) = (5; u (y) For contradiction we assume that Z [ X|Y
which implies that there exists (x’,1/,z") such that p(x’,y/,2z’) > 0and p(x'|y/,2’) # p(x|y’). Without loss
of generality?? let p(x|y’,z’) > p(x'|y’). Define the strategy ¢ : Y x Z — D such that forall (y,z) # (y',2)
we have 0q,u(y,z) = ¢, ,(y) and 0g,u(y',2") = & , (v, z). By definition payoff from d,,, is greater than payoff
from ¢, conditional on seeing (Y, Z). Thus it suffices to show that there is a decision problem under which
the payoff from strategy 0*(Y) is strictly worse than strategy (Y, Z). From the definition, it follows that

(we omit the dependence of decision strategy on u, g for clarity)

E[E[u(X, (Y, 2))|Y, Z]] - E[E[u(X,s"(Y))|Y]]

2 (u(x,0(y,2)) —u(xfﬁ*(y))P(xy,Z)l p(zly)p(y)

X

=X)L
Y Z

[Z x,0(y,2)) —u(x,5*(y))p(xly,7~)] p(zly)p(y)

Y-y Z—z

+

;(u(x,ff(y’,Z’)) - u(xfé*(y’))P(XIy’IZ’)l p(y)p(y)

=) ) [Z (x,6"( y))u(xré*(y))P(XIyIZ)] p(zly)p(y)

Y-y Z—7

+

Y (u(x,8(y',2") —u(x, 6" (') p(xly, Z)] p(Zly)p()

X

= [Zu(xfé(y’/Z’))) —u<x,5*(y’))] p(xly, 2 p(E 1Y )p(y)

X

Let k € R be such that p(x'|y’) < %Jrk < p('y,2"), D = {dy,dy}.The utility is given by u(dy,x") =k,

u(dy, x) = 1for x # x’ and zero otherwise. This gives us:

Y [u(x,8(y',2) —u(x, 6" (y)] p(xly,2")

X
=(k+Dp(ly,Z)—-1>0
As p(y/,z') > 0 the above implies that Z Ay Z’. Thus the result follows by contradiction. O
Remark 13. ( ), ( ) showed that if Y is more valuable than Z for all decision

problems then we can generate the signals Z by randomizing the signals Y post-realization. But in general,
the joint distribution of (X,Y,Z) isn’t uniquely determined by Blackwell dominance. Proposition 3 says
that if in addition to Y >=p Z, the signal Z is the minimal element (under the order >y) in the equivalent
class of signals as informative as Z, then the additional restriction of conditional independence (c) holds
for the joint distribution of (X, Y, Z).

2If p(X |y, 2") < p(x'] y) then as p(x’|y’) is convex combination of p(x'|y’, z) with positive weight for z = z’ there exists a z” such
that p(z"|y") > 0and p(x'ly’,2") > p(¥'ly").
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Remark 14. Within the linear Gaussian setting of example 2 we can consider the following:
Y=X+¢

Z=X+e+y
Where 1, € are mean zero normal variables with variance 02 and o2 respectively. We let X, 77, € to be jointly

2 2
independent. This gives us the conditional distribution (Y,Z|X) ~ N ((;g) , <g2 02(:_ 52)). Note

that 17711 = %. Proposition 3 implies among linear Gaussian signals (Y, Z’) such that (Y,Z'|X) ~

2 2 4 24
N <X> , v 1 po(o” +0%) , the signal (Y, Z) is least preferred (in Blackwell order). More
X) "\ po(c? + 6%)2 0% + 62

1
202452200 (02 +62)2

o . 23 . .
T (=gt the minimum value* of this expression

directly for correlation coefficient p, 1TZF711 =

is %

8 Affiliated information

So far we have made comparisons over all possible utilities and over all possible correlation structures. In
this section, we will restrict attention to a smaller class of utilities and distribution to get a better under-
standing of the complementarity between signals.
Positive dependence between the state and information is common in economics and has been studied in
( ), ( ), ( ). Following that we restrict attention to the infor-
mation acquisition environment with positive dependence. First, we restrict to the state (X'), sample (Y, Z)
and decision space (D) to be subsets of R inhereting the usual order from R. Just like before we require X',
Z, Y to be finite, and require D to be a closed interval 2*. We look at signals such that the joint pmf p of
(X,Y,Z) is affiliated and has full support. When studying the comparison of positive dependent signals it
is useful to restrict preferences to the ones under which optimal decisions are increasing in the signal value.
Such preferences arise naturally in statistical and economic problems ( ( ),
( ), ( ), ( )). With this in mind, we provide sufficient conditions for
choosing a signal over another in a restricted set of decision problems.

Definition 8. The random vector (S, ..., Sx) with pmf (distribution function for continuous variables) p is
affiliated if for any s,s’ € 81 x Sy x ...Sy we have the following?

p(sVs)p(s As') > p(s)p(s’)

Definition 9. If r,m € A(S) are two probability mass functions then we say r likelihood ratio dominates m
if 2L )) is increasing in s. Moreover, a family {r;};c7 of mass functions is MLR ordered if forany i > j € T
we have that r; likelihood ratio dominates r;.

Note, that the signal space S and the indexing set Z in the above definition can be partially ordered. In
particular S and Z can be a subset of R? with the usual partial order.

Proposition 4. For random variables (X, Y, Z) with pmf p. If {Pr(Y|X = x)}yex and {Pr(Z|X = x)} cx are
MLR ordered then {Pr(Y,Zg|X = x) }xcx is MLR ordered.

Bp* = arg mlanZ 11, then 1TZ 1= %
(=11
2*Whenever we refer to convergence of elements in X', ) and Z it's with respect to relative euclidean topology induced by the
subsets.
Bs Vs’ = (max{sy,s], }..., max{sy,s;}) and s As’ = (min{sy,s}, }..., min{sy, s;})
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Proof. (Sketch)
To see this let ¥ € A(X x Y x Z) represent the pmf of (X,Y,Zg), thenforany x’ > x, y' >y, 2/ > zwe
get that

r(x,y, 2)r(xy,z) = p(y'|x)p(Z'|x) p(y|x) p(z]x) p(x") p(x)
> p(ylx")p(zlx)p(y'|x)p('|x)p(x")p(x) (by MLR property)
=r(x,y,2)r(x,y,2)
This proves the desired MLR property. O

Corollary 1. For random variables (X,Y,Z) if {Pr(Y|X = x)}yex and {Pr(Z|X = x)}yex are MLR ordered
then {Pr(X|Y =y, Zs = z) }(y,z)cyx z is MLR ordered.

Proof. For some random vector (Sy,Sy) taking values in S; x Sy. If {Pr(51]Sy = s)}ses, is a MLR ordered
family then {Pr(S5,|S; = s) }scs, is a MLR ordered family. To see this note that Bayes rule gives us that for
any s;,s; € S

Pr(Sl = S]|52 = SIZ)PT’(SZ 2) PT’(SZ = Sé|51 = Sl)

Pr(Sl = S]|52 = Sz)PT(Sz é) PT’(SZ = Sz|51 = S])

Pr(S1=s1|S2=s5) _ Pr(S1=s]|S2=s))
Pr(S1=s1|S2=s2) — Pr(S1=s}[S2=52)

If s} > s; then the MLR property we get that 3

. Pr(Sy = 51|52 = s5)Pr(Say =s2) _ Pr(S; =515, = sé)Pr(Sz =s)
Pr(Sy = s1|S2 = 52)Pr(Sy = s) — Pr(S; =s|S2 = s2)Pr(Sy = s5)
PT’(SZZSIZ|51 251) PT(52—52|51 _5,1)

Pr(Sy; = s3|S1 =s1) — Pr(S2 = 52|51 = s})

This gives us that {Pr(S;|S1 = s) }scs, is @ MLR ordered family. The result then follows from proposition
4. O

Lemma 2. If the random vector (X,Y, Z) is affiliated then {Pr(Y|X = x)}yex and {Pr(Z|X = x)}xex are MLR
ordered.

Proof. Let p be the distribution of (X, Y, Z), then by affiliation it follows that for x’ > x € X,z >z € Z
and somey >y € Y:
p(x 2,y )p(x,zy) 2 p(x',2,y)p(x, 2,y
We prove the result for the case of {Pr(Z|X = x)},cx, the result for {Pr(Y|X = x)},cx follows analo-
gusly. To show this statement we will use the four function theorem of?® ( ).
Letx’ > x € X, 72 > z € Z then define fi(y) = p(¥,zy), 2(y) = p(x,2,y), f3ly) = p(xzy),
fa(y) = p(¥',2/,y). By affiliation, we get that for v,/ € YV, fi(y) 2(v') < fs(y Ay fa(y Vy'). The de-

sired result then follows from the four-function theorem after summing over J:

Y r(xzy) Y p(xZy) < ) plxzy) ) p(x,2y)
yey yey yey yey
= p(x,2)p(x,2) < p(x,2)p(x',2')
0

26From (1982) section 3: For four non-negative functions f1, fo, f3 and f4 on S such that for all s,s" € S, f1(s)f2(s") < fa(s A

S
') fa(s vs') then L f1(s)u(s) L f2(s)u(s) < X f3(s)p(s) L fa(s)u(s)-
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Let u : X x D — [0,00) represent the preference of the decision maker. Then {u(x,.)},cyx defines a

family of functions parameterized by x. For each x € X let D"(x) := {d € D|d € argmaxu(x,d')}.
a'eD
Similarly, for each ¢ € A(X) we define D¥(q) := {d € D|d € argmax) ,cy u(x,d)g(x)}. We restrict
d'eD

attention to utilities?” such that D*(x) is non-empty for each x € X. Additionally, we restrict attention
to preferences such that {u(x,.)}yex € Uipo, where Ujpp represents the collection of interval dominance
ordered family of functions (defined in ( ))-

Definition 10. A utility function u € Ujpo if and only if for any x’ > x and d” > d’

u(x,d”) —u(x,d) > (>)0and u(x,d”) > u(x,d) foralld € [d',d"] = u(x/,d")—u(x/,d") > (>)0
We say u(x’,.) interval order dominates u(x, .); written u(x’,.) > u(x,.).

The following lemma 3 is a restatement of theorem 1 in ( )

Lemma 3. Ifu € Upo then D¥(x) is increasing in strong set order?®.

Proof. (Sketch)

Fix some arbitrary u € U;pp. We prove the above by contradiction, to this end let x > x € X be such
that D (x") # D"(x). Thus there existd’ € D"(x’) and d € D"(x) such thatd > d’ and either d ¢ D"(x’) or
d" ¢ D"(x).

Firstletd ¢ D"(x'). Asd € D*(x') = d € arg maxu(x'5), thus u(x’,d") > u(x’,d). Moreover, as

seD
d € D"(x) we have u(x,d) > u(x,6) for all § € [d’,d]. By definition of U;pp we get that u(x’,d) > u(x’, )
forall § € [d,d]. In particular, u(x’,d) > u(x’,d") which is a contradiction.

Now letd’ ¢ D"(x)andd € D"(x'). In this case u(x’,§) is constant for 6 € [d’,d]. Asd’ ¢ D"(x) we have
u(x,d) > u(x,d") and u(x,d) > u(x,é) for 6 € [d’,d]. By definition of U;pp we get that u(x’,d) > u(x’,d")
which is a contradiction.

Thus D*(x") > D"(x). O

The above lemma can be interpreted as a monotone comparative static result stating that higher states
lead to higher optimal actions.

Remark 15. For some u € Ujpp and prior g € A(X) define the the function u? : d — Y cy u(x,d)gq(x).
From Theorem 2 of ( ) we get that if r,m € A(X) such that r likelihood ratio
dominates m then u” >; u™. Combining this with lemma 3 we get that D" (r) > D"(m).

The following proposition follows from a slight modification to lemma 7 in ( )-

Proposition 5. For any u € Urpo. If a decision rule 6 : X — D is decreasing in x then there is a decision d* € D
such that u(x,d*) > u(x,6(x)) forall x € X.

Proof. Fix some u € Ujpo. By lemma 3 we get that D"(x’) > D%(x) for any x’ > x, this allows us to
construct an increasing decision rule §* : X — D such that §*(x) € D"(x).

We construct 6* in the following way. Enumerate X = {xy,...,xp} where x; < x;,1. Choose some
d; € D*(x1) and let 6*(x1) = dy. For the induction hypothesis assume for 1 < i < k < M we have 6*(x;) €
D¥(x;) and 6*(x;_1) < 6*(x;). For the induction step consider xy then if D¥(x;1) — U5 D"(x;) # &,
let 6*(xgy1) = dyyq for some dy 1 € D¥(xgy1) — UK D¥(x;). As D¥(xzyq) > D¥(x;) for i < k and by
the inductive hypothesis 6*(x;) € D"(x;), we get that 6*(xx,1) > 0*(x;) for i < k. If on the other hand
D¥(xp11) — UK D*(x;) = @ we let 6" (xx11) = 6*(xg), it then follows that 6* (xx,1) € D*(xg41). Thus by
induction, we have an increasing decision rule 5*.

%In fact we require that the arg max exists for every sub-interval of D.
2Let A and B be two subsets of R. We say that A larger than B in the strong set order (written A > B) if for any fora € Aand b € B,
we have max{a,b} € A and min{a,b} € B. See (1998) for details
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In the following, we have two cases. First, if 6(x) > 6*(x) for all x € X. In this case we let d* = 5*(xp1).
We claim that u(x,d*) = u(x,6*(xp)) > u(x,d) for alld > §*(xp) and x € X. To see this we proceed by
contradiction, assume that there exists x < xp such that u(x,6*(xp)) < u(x,d) for some d > §*(xp). Let
d e argmax u(x,d). We get that u(x,d ) > u(x,d’) > u(x,6*(xp)) and u(x,d ) > u(x,d’) for all d’ €

d'€[o* (xm), d]
[6*(xp1), d]. Thus by IDO property u(xp,d ) > u(xpr,0* (X)), this is a contradiction as 6* (xp;) € D" (x ).
We conclude that u(x,d*) = u(x,6*(xp)) > u(x,d) foralld > 6*(xp) and x € X. From é(x) > §*(x) and
0*(x) is increasing in x, we get 6(x) > 6*(xp) for all x € X. Thus, u(x,d*) > u(x,6(x)) forall x € X.

Now we show the second case. As ¢ is decreasing and ¢* is increasing, if 6 2 6%, there is some x* € X
such that x' < x* implies §(x’) > 6*(x*) and x’ > x* implies §(x’) < §*(x*). Let d* = 6*(x*). As 6*(x*) €
D"(x*) we get that u(x,6*(x*)) > u(x,d) for all d < 6*(x*). By IDO property, u(x’,6*(x*)) > u(x’,d) for
all ' > x* and d < §*(x*). In particular, u(x’,6*(x*)) > u(x’,6(x")) for all x’ > x*. We are just left with
showing u(x/,6*(x*)) > u(x/,5(x")) for all " < x*. To do this we will repeat the argument in the first case
with xp; = x*. O

The following theorem gives a sufficient condition for complementarity with affiliated information and
IDO preferences.

Theorem 1. For random variables Y, Z such that {Pr(Y|X = x)}ycx and {Pr(Z|X = x)}ycx are MLR ordered,
if there exists a function T : X x Y x Z — Y x Z such that
1. T(x,y,z) is decreasing® in x for each (y,z) € Y x Z; and
2. For Zg as defined in section 6, we have (X,Y,Zz) =4 (X, T(X,Y,Z)); where = refers to equality in distri-
bution.
Then Y and Z are Uipo— complements, i.e. Z i@mo Zg.

Proof. 3 Fix some utility u € U;po and full support prior g € A(X). First, observe that by corollary 1 and
remark 15, there is an optimal decision rule ¢ : Y x Z — D that solves the equation below and is increasing

in (y,z).

E[u(X, ¢(Y,Z5))] = E | maxE [u(X,d)|Y, Ze]

Composing ¢ with T gives us that ¢ o T(x,y, z) is decreasing in x for each y,z. Fix some (y,z) € Y x Z,
then ¢(T(.,y,z)) : X — D is a decreasing decision rule and by proposition 5 there exists a decision d;, . € D

such that u(x,d;.) > u(x, ¢(x,y,z)) for all x € X. Define a new decision rule ¢ : Y x Z — D such that

¥(y,z) = dj .. For each x € X’ we have the following:
E[u(X, ¢(Y,Z))|X = ] = E[u(x, ¢(T(x, Y, 2))|X = 1]
<Efu(x,p(Y,2))[X =] = E[u(X, (Y, 2))|X = x|
Summing over X with respect to g we get that

Y Eu(X, oY, Zg)| X =x]q(x) < Y Eu(X,¢(Y,Z2))|X = x]q(x)
xeX xeX

Let ¢* : Y x Z — D be such that

Eu(X,(Y,2))] = E |maxE [u(X,d)|Y, Z]

2By decreasing we mean decreasing in the usual partial order on R?, i.e. (y,z) > (y/,2) ifand only if y > ' and z > 2/, and strict
inequality if at least one of the coordinates is strictly greater.
30The proof follows from a slight modification of theorem 3 in ( ) to the case of two-dimensional signals.
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Thus we have
Y. Eu(X, 9(Y,Zs)|X = ] <Y EuX 9, 2)|X=x]q(x) < Y Eu(X,p*(Y,2))|X =x]q(x)
xeX xeX xeX

Via(Y, Zes) < Vig(Y, Z)

= Zlq,u(y} Y,Z)p(y) >0
y

This establishes the required statement as the choice of decision problem was arbitrary.

8.1 Strong complements

In this section, we characterize strong complementarity for affiliated information and IDO preferences. We
also extend this characterization to the case of continuous random variables in order to provide a more
intuitive result.

Proposition 6. For random variables (X,Y,Z) such that {Pr(Z|X = x)}ycx is MLR ordered. If the function T in
theorem 1 is such that T(x,y,z) = (y,T(x,y,2)) for some T : X x Z — Z, then Y in a strong Uypo— complement
of Z.

Proof. Note that {Pr(Zz|X = x,Y = y)}xex = {Pr(Z|X = x)}rcx is MLR ordered. Fix some y € ), there
is an increasing decision rule ¢y : Z — D such that

E[u(X, ¢y(Z0))|Y = y] = E |maxB[u(X,d)|Zo] | Y =y

Define 7, : X x Z — D such that 7,(x,z) = 7(x,y,z). Composing ¢, with 7, gives us that ¢, o 7y (x,z) is
decreasing in x for each z. Fix some z € Z, then ¢(7,(.,z)) : X — D is a decreasing decision rule and by
proposition 5 there exists a decision d;, , € D such that u(x,d; ;) > u(x, ¢y o 7(x,z)) for all x € X'. Define
anew decision rule ¢, : Z — D such that ¥y(z) = dj, .. For each x € X’ we have the following:

E [u(X, ¢y (2))|X = x] = E [u(X, 9y (Ze))|X =x,Y =y| = E [u(x, oy (1(x, Z2))|X = x,Y = y]
E [u(x, ¢(2)|X = 5,Y =y] = E [u(X,9,(2))[X =, =]

Pr(Y=y|X=x)q(x)
Yex Pr(Y=y|X=x")g(x’)

Summing over X with respect to p, € A(X) where p,(x) = p(x|Y =y) =
that

we get

Z)){E[ (X, 9y(Z2)|X = x,Y = y] p(x|Y = y) Z}){E[ (X, 9y (2))|X = x,Y =y] p(x]Y =y)

Let ¢ : Z — D be such that

E [u(X, 95 (Z)IY =] = B |maxE (X, d)[2] )Y =y
Thus we have

Z);(E[ (X, 9y(Z2)|X = 2] py(x <ZXIE[ (X, 9y(2)|X = x,Y = y] py(x <ZXIEJ{ (X, 5 (2))1X = %Y =y] py(x)

= Vi, (Z) < Vuyp, (Zy)
— Lu(y;,Y,Z) >0

This establishes the required statement as the choice of decision problem was arbitrary. O
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8.1.1 Continuous Case

In this section we will assume that X', ), Z are compact intervals in R. Additionally, we make the following
assumptions:

Assumption 1. The conditional distribution function given X = xand Y = y, Pr(Z < z|X = x) and
Pr(Z < z|X = x,Y = y) are continuous in z for all x, y are continuous is x for all z, y.

Let F(y|X = x) = Pr(Y < y|X = x) and G(z|x) = Pr(Z < z|X = x) represent the conditional cdf of
Y and Z given X = x respectively and let Hy(z|x) = Pr(Z < z|X = x,Y = y) be the conditional cdf of
Z given X = xand Y = y. Let f(y|x), g(z|x) and hy(z|x) represent the corresponding probability density
functions. Extending definition 9 to continuous random variables we say that the family of distributions

{G(Z|x)}yex is MLR ordered if ‘(:; ((ZZ“J;/)) is increasing in z for each x’ > x.

Assumption 2. The family of functions {u(x,.)} vc x is equicontinous.

The above assumption guarantees the existence of an optimal decision rule mapping Z to D for each

yey

Proposition 7. For random variables (X, Y, Z) such that {G(Z|x) } ye x is MLR ordered, if forally € Y, z,2' € Z,
x<x' € X:

Pr(Z<z|X=x)> ()Pr(Z<Z|X=xY=y) = Pr(Z<z|X=X)> ()Pr(z<Z|X=x",Y =y)

Then'Y is Uipo— strong complement (substitute) of Z, i.e. for ally € ) we have Z EZ{,{IDO (j?’DO)Zy. Additionally
when (X, Y, Z) are affiliated then the converse holds.

Proof. (Sketch)
Define®! 1, (x,z) := Hy’l(G(z\x)|x).
Assume forally € Y, z,2/ € Z,x <x' € X:

G(zlx) = (S)Hy(Z'|x) = G(zlx') = (S)Hy(Z]x) (%)

Fix some y € ). Assume that (*) holds for all z,z’ and x < x’. Then we can show the function T,

defined in step 1 is increasing in x. To this end fix x < x’ € X’ and some z € Z. Let z’ be the largest value
for which G(z|x) = Hy(2|x). By (x) we get that G(z|x") > Hy(2'|x"). The desired statement follows from:

T, (¥, z) = Hgl(G(z|x’)\x’) > HJl(Hy(z’|x’)) > 7

and

z' = H; ' (Hy('x)) = H, ' (G(z]x)) = 7(x, 2)

Fix some y € ). Let 7,(x,z) to be increasing in x. Assume that for some x,z,z' we have G(z|x) >
H,(2'|x), it follows that T (x,z) > z’. By definition for any x’ > x we have G(z|x") = Hy(7,(x/,z)|x), thus:

G(z|x") = Hy(ty(x',z)|x") = G(z|x") > Hy(7,(x,2)|x") = G(z|x') > Hy(z'|x") forallx’ > x

The choice of y was arbitrary so we get that () holdsally € ), z,2/ € Z,x < x’ € X if and only if
foreveryy € ),z € Z,1,(x,z) is increasing in x. In particular, we have shown that for every y € ), Hy is
Lehmann-more accurate®® than G if and only if () holds for for every y € Y,z € Z.

31Hy‘l(r|x) =inf{z: Hy(z|x) >r},0<r<1
%2Such a value exists as G(|x), Hy (|x) are continuous cdf.
33We follow the terminology of ( ) and ( )- The concept has been studied in ( ) and

(
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As the G{(Z|X = x)}xex is MLR-ordered* from Theorem 3 of (2009) we conclude
that

E |maxE [u(X,d)|Zz] |Y = y} <E [maxIE (X, d)|Z]|Y =y
aeD deD
— Vu,py (Zy) Z ‘/u,py (Z)

1s ge . . h oL . .
For the converse note that affiliation implies that - ((ZZ“J;; is increasing in z for each ' > x € X and
v

y € Y. The result then follows from proposition 11 in (2009).
O

Remark 16. Roughly speaking the condition in proposition 7 says that Y strongly complements Z for IDO
preferences if knowing any realization Y = y makes Z and X more positively dependent compared to not
knowing Y. Where positive dependence captures the idea that higher values of X and Z are more likely to
occur together. More concretely, consider the following stronger condition: % forally € V,z,z € Z,x <
x'e X

P(Z<zIX=x)—P(Z<Z|X=x,Y=y)>P(Z<z|X=x)-P(Z<Z|X=4,Y=y)

As (X,Y,Z) are affiliated we get P(Z|X = x') =posp P(Z|X = x) and P(Z|X = ¥',Y = y) =rosp
P(Z|X = x,Y = y). Thus the above inequality can be interpreted as for all values of Y = y, Z conditional
on X = x,Y = y increases faster in FOSD sense than Z conditional on X = x as x increases.

9 Applications

9.1 Delayed Acquisition

In this section, we look at an application similar to section 3.2. Consider the following information acquisi-
tion problem:
1. In the first period, the DM chooses between acquiring a signal Z at some cost ¢(q,Y) > 0 or delaying
the acquisition at a cost € > 0.

2. In the second period

(a) If Z was acquired then the decision maker observes realization (y,z) of the bivariate random
variable (Y, Z).

(b) If the acquisition is delayed, the agent first observes the realization y of Y and then decides to
acquire signal Z at cost c(q, y) >0

3. Let®® D be a finite decision space. In the third period:

(a) If the agent acquires Z, then after observing (Y = y, Z = z) the decision maker chooses d €

argmaxE[u(X,9)|Y =y, Z; =z|.

0eD
(b) If the agent chooses not to acquire Z, then after observing ¥ = y the decision maker chooses
d € arg maxE[u(X,9)|Y = y].
6eD

The cost c(q,Y) = V;u(Y, Z) — V;,u(Y) represents the price of signal Z in period 1. The interpretation of
the cost is that if the prior, utility and expectation of learning Y are common knowledge among the seller

34Note the same conclusion also follows by adapting the proof of proposition 5 to continuous X'.

35The condition in proposition 7 is a single crossing condition on the difference of cdfs whereas the condition in the remark is an
increasing difference condition on the same difference of cdfs.

36We restrict attention to pure strategies for clarity.
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and buyer of the information then V}, , (Y, Z) — V; ,(Y) is the highest amount the buyer is willing to pay to
learn Z ontop of Y.

After the realization of information Y = y, the new beliefs about the state p, and the utility u are
commonly known among the buyer and the seller. The cost c(q, y) = V}p,,u(Z) represents the price of signal
Z in period 2 after observing the realization Y = y. Here, we make the implicit assumption that the seller
doesn’t know if the buyer actually saw Y = y or not, more specifically the seller cannot elicit the buyer’s
knowledge of the correlation between Y and Z. Thus the seller can’t use this correlation to price Z.

If there is no delay cost the decision maker always weakly prefers to delay the decision to acquire
information. With the presence of delay cost ¢ > 0, the decision maker might have the incentive to forgo a
contingent decision in favor of taking advantage of mispricing by the seller.

The following propositions clarify the relationship between complementarity and the decision to delay
information acquisition.

Proposition 8. If Y and Z are complements then there exists a small enough delay cost € > 0 such that the decision
maker prefers to delay his acquisition decision.

Proposition 9. If Y is a strong substitute of Z then for all delay costs € > 0, the decision maker prefers to acquire Z
today rather than delaying.

Proof. 1f no delay: the expected utility of the agent is V,,4(Y). If delay: Yoy, Lig(y;Y, Z)p(y) + Vi, (Y) —
¢; where YV, := {y € Y|I(y;Y,Z) > 0}. Strong substitute implies that ), has zero probability, and
complementarity implies that ), has strictly positive probability. O
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